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ABSTRACT 

 

 The quality of recreational and shellfishing waters has historically been monitored 

using commensal, allochthonous bacteria shed in feces (fecal indicator bacteria, FIB). 

The fate of FIB in the environment should mimic that of bacterial, protozoan, and viral 

human pathogens, which may also be allochthonous (e.g. Salmonella, Cryptosporidium, 

or enteric viruses) or autochthonous (e.g. Vibrio spp.) to aquatic environments.  FIB are 

contributed to water from human and animal sources; however, pollution source cannot 

be determined by conventional FIB measurements.  Because fecal source determination is 

important for pollution remediation and assessment of human health risks, microbial 

source tracking (MST) methods are increasingly used in water quality studies. 

The host-specific genes (markers) used for MST include the 16S rRNA of 

Bacteroides HF183 and the T-antigen of human polyomaviruses (HPyVs).  In my work, 

correlations among FIB, MST markers, and autochthonous pathogens were explored in 

the context of factors that may influence these relationships. Specifically, the effects of 

stormwater runoff, sediment resuspension, and survival/persistence of FIB on submerged 

aquatic vegetation were investigated in a recreational lake.  Furthermore, the relationship 

between FIB and concentrations of the autochthonous pathogen, V. vulnificus, was 

investigated at water bodies surrounding Tampa Bay.  I hypothesized that degraded water 

quality would influence the concentration and/or population structure of V. vulnificus, a 

potentially lethal human pathogen.  Finally, I hypothesized that the gene encoding a 



www.manaraa.com

 

vii 
 

sodium-phosphate transporter (nptA) would be differentially expressed in V. vulnificus 

strains under varying conditions of salinity and phosphate concentration.  

  I hypothesized that stormwater infrastructure/runoff, SAV, and sediments would 

serve as reservoirs for FIB, human-associated microbes (HF183 and HPyVs), and 

allochthonous pathogens (Salmonella, Cryptosporidium, Giardia, and enteric viruses).  

FIB concentrations in the water were positively associated with those in the sediment, 

SAV, and with 24hr antecedent rainfall.  At least one MST marker or pathogen was 

found in 35% of samples following rain events.  These data were incorporated into a 

Bayesian model, which predicted pathogen absence when fecal coliform concentrations 

were low.  Stormwater was also shown to be an important reservoir/conveyance system 

for FIB, human-associated microbes, and pathogens.  

 I hypothesized that polluted estuarine waters in Tampa Bay, and oysters harvested 

from them, would contain higher V. vulnificus concentrations, and that the population 

structure would be altered compared to unpolluted waters.  Enumeration included direct 

plating, enrichment followed by plating, and quantitative PCR (qPCR).  V. vulnificus 

colonies isolated directly on mCPC agar were rarely PCR-confirmed, although 

enrichment and qPCR methods yielded a higher confirmation frequency. Unconfirmed 

colonies resembling V. vulnificus were identified as V. sinaloensis via 16S rRNA 

sequence analysis and were more frequently detected in less polluted waters.  

Comparison of growth rates among V. vulnificus and V. sinaloensis strains in enrichment 

media and seawater showed that V. vulnificus had faster growth rates (µ) in enrichment 

media, but that µ of V. sinaloensis strains was greater in seawater.  V. sinaloensis 

presence can therefore lead to overestimation of V. vulnificus concentrations when 
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samples are directly plated. These results highlight a need for better understanding of the 

ecology and virulence potential of this newly-described species. 

Finally, I hypothesized that V. vulnificus strains with varying virulence potential 

would differentially express the nptA gene in response to changes in environmental 

conditions.  Expression studies were performed on biotype 1, 2, and 3 strains, and strains 

more closely associated with environmental reservoirs (water or oysters) showed up to 

100-fold greater nptA expression than strains isolated from clinical cases.  Gene 

expression in environmentally-associated, but not clinically-isolated, strains was highest 

in media at pH 6.0 vs. those at pH ≥ 7.0 and at 10‰ salinity.  In contrast, expression was 

highest among clinical strains at 10‰ salinity, pH 8.0 media.  Sequence analysis of the 

nptA gene also divided strains into environmentally- and clinically-isolated groups.  

These results suggest that differences in gene expression may be related to host 

preference and may be associated with differential virulence of strains in humans. 

 These studies demonstrate a relationship between water quality (determined by 

FIB concentrations) and the prevalence of allochthonous and autochthonous human 

pathogens, and reveal that many environmental habitats may serve as reservoirs for FIB 

and pathogens.  Differences in water quality were further demonstrated to impact the 

community structure of Vibrio spp. and may affect the relative abundance of strains with 

greater virulence potential.   
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CHAPTER 1: BACKGROUND AND RESEARCH OVERVIEW 

Water Quality and Risk to Human Health 

 Fecal contamination of waters poses a significant health risk due to the possible 

contribution of human pathogens from human and animal sources (29, 37, 163).  

Furthermore, fecal contamination as well as stormwater runoff may also increase nutrient 

loads, allowing autochthonous pathogens such as Vibrio spp. to grow to higher 

concentrations than they would in unimpacted waters (159).  Fecal indicator bacteria and 

human pathogens, including bacteria, protozoa and viruses in the water may also be 

concentrated in shellfish, creating a foodborne as well as a waterborne risk to public 

health (21, 41, 129). This issue can be particularly serious when V. vulnificus is involved 

due to the high mortality rate (75).  Monitoring for all bacterial, protozoan, and viral 

pathogens, however, is impractical due to the multitude of potential targets as well as the 

prohibitive cost and labor which would be involved.  Fecal indicator bacteria (FIB) 

including fecal coliforms, Escherichia coli, and enterococci have therefore historically 

been used as a measure of ambient water quality (2, 78, 153, 156, 157).   

FIB are commensal organisms that are shed in high concentrations in feces, and 

elevated concentrations of these bacteria have been associated with elevated risk for 

waterborne disease as well as the presence of pathogens (78, 162, 163, 179).  In a meta-

analysis of previous epidemiological studies, Zmirou, et al. found that elevated 

concentrations of  fecal coliforms, E. coli, and enterococci were all associated with 

elevated risk for gastrointestinal (GI) illness, and that enterococci served as a better 
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indicator for health risk than fecal coliforms (179).  Wade, et al. also found, among 

previous epidemiological studies, that enterococci concentrations were predictive of GI 

illness in marine environments, but that E. coli concentrations were more consistent 

indicators of health risk in fresh water (163).  In a study at Lakes Michigan and Erie, 

enterococci concentrations, determined by quantitative PCR (qPCR) rather than standard 

culture-based enumeration methods, showed a significant positive association with 

increased GI illness among bathers, and a trend linking elevated Bacteroidales 

concentrations and GI  illness was also noticed (162).  A drawback to a majority of these 

studies, however, is that contamination was known to be from human sources, so the 

effectiveness of FIB at predicting health risk from non-point source contamination is still 

uncertain.  In an epidemiological study at Mission Bay, CA, where pollution was 

contributed from non-point sources, concentrations of enterococci, fecal coliforms, and 

total coliforms were not linked to increased risk of GI illness (40).  While these studies 

did not investigate the particular, presumably allochthonous, etiological agents causing 

GI illness, studies which have focused on the relationship between FIB concentrations 

and specific pathogen presence have reported an imperfect association between the two 

(3, 19, 66, 97, 103). 

Other groups have focused on the relationship between FIB and autochthonous 

pathogens, specifically, V. vulnificus (76, 160).  In Danish waters when the water 

temperature was frequently < 20° C, V. vulnificus occurrence was shown to be 

significantly associated with the presence of coliform bacteria as well as enterococci (P = 

0.0015 and 0.022, respectively), but not with E. coli (76).  Similarly, a study of V. 

vulnificus in Hawaiian coastal streams revealed positive correlations between V. 
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vulnificus densities and indicators of fecal contamination including enterococci (P = 

0.001), E. coli (P = 0.037), Clostridium perfringens (P < 0.001), and F+ coliphage (P = 

0.026) (160).  Unfortunately, studies linking V. vulnificus and FIB concentrations are 

relatively rare in the literature, with a majority conducted in United States finding no 

correlation between V. vulnificus and either fecal or total coliforms (84, 120, 123, 145).  

Reasons for the lack of correlation between FIB and allochthonous or 

autochthonous pathogen presence may be due to the fact that FIB are also contributed 

from animal sources (52, 70, 93, 151, 169) or, in the case of autochthonous pathogens 

such as vibrios, factors such as temperature or salinity may have more significant effects 

on concentrations (82, 110, 120, 123).  FIB may also persist and grow in sediments and 

submerged aquatic vegetation (3, 6, 27, 72, 137), or be contributed from stormwater 

runoff (23, 80).  Several non-point sources including stormwater and agricultural runoff 

are of particular concern for recreational and commercial water quality due to the 

contribution of not only FIB and pathogens (23, 57, 80, 114), but also to nutrient loading 

of nitrogen and phosphorous leading to the eutrophication of water bodies (126, 132).  

Increased nitrogen and phosphorous concentrations in both fresh and marine waters have 

been shown to have positive effects on bacterial growth (50).  Furthermore, higher 

nitrogen and phosphorous levels have been suggested to increase the replication rate of 

aquatic viruses as well, and may influence the virulence and survival of other 

autochthonous pathogens (136, 168).  

 To address the issue of fecal source identification when fecal contamination is 

present, methodologies for microbial source tracking (MST) have been developed to 

determine sources of fecal pollution [reviewed in (10, 68)].  MST methods identify 
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contamination source via identification of i) specific phenotypes or genotypes of bacteria 

which are closely associated with particular host species or ii) specific genetic targets for 

microbes known to be closely associated with a particular host (141).  These methods 

may be library-dependent or library-independent.  Library-dependent methods require 

collection of a large number of isolates from a variety of sources and characterization of 

these isolates for some discriminatory attribute such as antibiotic resistance (68) or 

genotype (122).  Due to the labor-intensive nature and high cost of library-dependent 

methods, recent focus has been on the development of library-independent methods, 

which generally target specific genes associated with host-associated microbes (10, 106, 

107).  These methods have been successful at identifying specific sources of fecal 

contamination, which can inform remediation strategies for impaired water bodies (88, 

89). 

Vibrio vulnificus in the Environment 

 Vibrio vulnificus is a Gram-negative, halophilic, opportunistic pathogen of 

humans.  The bacterium is autochthonous in estuarine and marine waters and shellfish 

(24, 79, 171).  In water, concentrations ranging from 3 × 101 to 2 × 102 CFU × ml-1 have 

been reported in Chesapeake Bay (171), concentrations > 2.5 × 102 CFU × ml-1 were 

reported in the Northern Gulf of Mexico (82), and concentrations in Florida estuaries 

have ranged from undetectable to 4.6 × 102 MPN × ml-1 (145).  In oysters, concentrations 

were reported over a larger range - < 10 to approximately 103 – 104 MPN × g-1 among 

oysters harvested in southeastern states (110), up to 2.8 × 103 CFU × g-1 in the Northern 

Gulf of Mexico (82), and between  < 1 to 105 MPN × g-1 in oysters harvested from 

Apalachicola Bay (79).  Furthermore, diversity in individual oysters has been reported to 
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be extremely high with > 100 strains isolated from a single oyster (25, 140).  Importantly, 

temperature (> 15° C) has been nearly universally reported to be a key factor controlling 

V. vulnificus densities (82, 123, 124, 145), with unculturable concentrations reported at 

colder temperatures (82, 110, 145).  Salinity is also an important variable affecting the 

recovery of culturable V. vulnificus, where a majority of studies report isolation of the 

species from the water at salinities between 8 and 23 ‰ (76, 82, 110, 145).  Previous 

studies also have shown a positive correlation between V. vulnificus concentrations and 

those of FIB (76, 160); however, these results are not consistent in the literature (84, 120, 

123, 145).   

Vibrio vulnificus exhibits a high degree of genetic diversity and was originally 

divided into two biotypes based on pathogenicity to specific hosts, where biotype 1 was 

pathogenic to humans while biotype 2 was associated with fish or eel pathogenesis (150). 

Phenotypically, biotype 2 strains were originally distinguished from biotype 1 strains via 

negative reactions for indole production, ornithine decarboxylase activity, acid 

production from mannitol and sorbitol, and growth at 42º C (12, 150).  While 

predominantly associated with eel pathogenesis, biotype 2 strains have also been 

implicated in human infection  (1).  Biotype 1 strains are known to be globally distributed 

while biotype 2 strains are generally isolated from European waters where fish 

aquaculture is more prevalent, although isolates have been recovered from Asia (130).  

More recently, a third biotype that is phenotypically distinct from biotypes 1 and 2, but 

believed to be a genetic hybrid of these biotypes, was implicated in wound infections 

associated with handling Tilapia (14, 15).  Biotype 3 strains are presently believed to be 

geographically limited to Israel (14). 
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Vibrio vulnificus Pathogenicity 

Vibrio vulnificus is the leading cause of death following consumption of raw or 

undercooked shellfish in the United States (47, 75), but infection may also occur through 

exposure to open wounds (30, 33).  From 2003 to 2004, 142 cases of vibrio-related 

waterborne disease cases were reported.  Vibrio vulnificus cases had higher rates of 

hospitalization (87.2%) and mortality (12.8%) than other Vibrio spp. including V. 

parahaemolyticus.  From 1998 to 2007, 276 cases of V. vulnificus infections were 

reported in Florida resulting in 76 deaths (166).  Immunocompromised individuals and 

those with liver diseases are at the highest risk of infection (16, 166).  Symptoms due to 

consumption of V. vulnificus range from gastroenteritis to primary septicemia, and 

mortality rates greater than 50% have been reported for patients with septicemia (83).  

These individuals face the possibility of death within 24 hours of exposure to V. 

vulnificus (74).  Wound infections may result in skin lesions or muscle damage which 

may lead to amputation (16).  Antibiotic treatment has been shown to be an effective 

treatment for infection (75). 

 Despite high diversity among V. vulnificus strains, only single strains have been 

isolated from clinical cases, suggesting that strains exhibit differing virulence potential 

(79).  Several groups have attempted to establish methods to distinguish more highly 

virulent strains.  These methods are based on differences in the 16S rRNA sequence (5, 

112), heterogeneity in a virulence correlated gene (vcg) (128), lineage as determined by 

multilocus sequence typing (39), and genotypic comparison (35).  Exploitation of 

heterogeneity in a conserved hypothetical protein (hypB) has also been well correlated 

with previously established typing methodologies (139, 140).  In fact, all typing strategies 
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are highly correlated with each other (i.e. 16S rRNA typing, vcg typing, typing by 

lineage, and hypB typing generally all result in assignment of a strain to an 

environmentally- or clinically-associated strain type with few exceptions) (39, 140).  

While the origin of strains (e.g. clinical isolates vs. those recovered from environmental 

reservoirs such as water or oysters) are generally highly correlated with strain type by 

these methods, associations between strain type and virulence are imperfect.  Water 

quality, temperature, and salinity have been shown to affect the relative distribution of 

environmentally- vs. clinically-associated strain types, but studies assessing these 

relationships are limited (60, 86, 99).  One of the main hypotheses of the current work is 

that poorer water quality may harbor higher proportions of clinically-associated strains 

than environmentally-associated strains, which has been previously suggested (60).  

Nutrient loading, in the form of fecal contamination, may increase availability of nitrogen 

and phosphorous, which have been previously suggested to enhance virulence and 

abundance of native bacteria, especially pathogens (136).  Furthermore, anthropogenic 

impacts to water chemistry including sewage contamination have been suggested to 

impact the abundance of hosts such as copepods for V. cholerae, as well as other Vibrio 

spp., which may contribute to their survival or increase in contaminated waters (42).   

Virulence Factors of Vibrio vulnificus 

 Despite strain-specific differences in virulence potential among V. vulnificus, the 

virulence mechanism(s) is not well understood.  Several literature reviews have been 

conducted to investigate the relative importance of putative virulence factors 

investigated; however, a clear consensus regarding those genes which are essential for 

strain pathogenicity and elevated virulence potential is still lacking (62, 83, 100, 142).  



www.manaraa.com

 

8 
 

The capsular polysaccharide (CPS) is regarded as the primary virulence factor required 

for infection (175, 177); however,  all encapsulated strains are not equally virulent (109).  

Strains may also undergo phase variation from encapsulated to un-encapsulated 

phenotypes where the un-encapsulated types show decreased virulence in mice (135, 

175).   

Iron availability has also been related to strain virulence (174). Siderophores 

(encoded by venB and viuB genes), which scavenge iron from host cells, have also been 

implicated in strain virulence.  A mutant lacking venB showed reduced virulence in an 

infant mouse model, and virulence was restored following complement mutation (101).  

Similarly, the viuB gene (encoding the vulnibactin siderophore) was identified 

preferentially in vcgC (clinically-associated) strains, and strains carrying this gene were 

more resistant to lysis by complement-active host serum (18).  In this study, vcgE 

(environmentally-associated) strains lacking viuB survived comparably to vcgC strains in 

complement-inactivated serum, and, following the addition of iron to complement-active 

serum, no significant difference in survival was observed between strain types (18).   

A hemolysin/cytolysin and metalloprotease (encoded by vvhA and vvpE, 

respectively) have been identified as potential virulence factors; however, disruption of 

these genes did not result in a significant decline in virulence (173).  Knockout of another 

hemolysin (encoded by hlyIII) resulted in attentuation of virulence in a mouse model 

(36).  Disruption of the hemolysin/cytolysin and metalloprotease genes (vvhA and vvpE) 

did not result in a decline in virulence, but further mutation to disrupt the flgC gene, 

encoding a portion of the flagellar basal body, resulted in attenuation of virulence, 

presumably due to inhibition of the bacterium’s ability to adhere to host cells (87).   
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The RtxA toxin’s potential as a virulence factor has also been recently 

investigated, and rtxA+ strains have been shown in vitro to damage various cell types; 

however, disruption of the gene did not result in significant attenuation of virulence in 

vivo in the mouse model (20, 96).  The rtxE gene, which is part of a separate rtxBDE 

operon whose expression is believed to be induced by exposure to epithelial cells, has 

been identified as essential to the secretion of the RtxA toxin.  Mutant strains with 

disrupted rtxE genes show a significantly lower 50% lethal dose (LD50 ) in mice as well 

as a significant reduction in cytotoxicity on epithelial cells in vitro (95).  Furthermore, 

INT-407 human intestinal epithelial cells infected with a ΔrtxE-mutant strain exhibited a 

decreased immune response (lower levels of interleukin-8 production and  nuclear factor- 

κB activation and binding) compared to cells infected with the wild-type strain (94).    

Specific aims 

 Research presented here investigates the relationship between water quality, as 

determined by FIB concentrations, to the prevalence and concentration of both 

allochthonous and autochthonous human pathogens.  Further emphasis is placed on the 

effect of water quality on the community structure of Vibrio spp. as well as genotypic 

differences between V. vulnificus strains which may be associated with differential strain 

virulence.   

 Studies described in this dissertation have addressed hypotheses relating to 

potential reservoirs of FIB, MST markers, and allochthonous pathogens.  The stormwater 

infrastructure and runoff connected to Lake Carroll, a suburban freshwater lake used 

extensively for recreation, were hypothesized to be important reservoirs/conveyance 

systems for FIB, MST markers, and allochthonous pathogens into the lake.  Furthermore, 
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sediment resuspension as a result of recreational bathing was suspected of elevating 

waterborne concentrations of FIB, and SAV, which frequently washes ashore, was also 

suspected of providing a reservoir for a native enterococci population in this lake.  The 

impacts of temperature, salinity, and water quality surrounding the Tampa Bay area were 

also hypothesized to influence densities of V. vulnificus in water and oyster samples, with 

high concentrations supported in more contaminated waters.  The discovery of V. 

sinaloensis led to further conjecture that this species may be a more dominant member of 

the Vibrio community in water and oysters around Tampa Bay due its ability to grow 

more rapidly than V. vulnificus in certain environmental reservoirs.  Finally, differential 

expression of the nptA gene, encoding a sodium-phosphate cotransporter, among varying 

strains of V. vulnificus was hypothesized to play a role in strain virulence or host 

colonization, a role previously suggested for this gene in V. cholerae (92).  Factors such 

as salinity, phosphate, and pH were expected to influence expression of nptA differently 

among strain types.   

Specific aims of these studies include: 

 Assessment of the effects of sediment resuspension, SAV, and stormwater 

runoff as sources of FIB, MST markers, and allochthonous pathogens (e.g. 

Salmonella, Cryptosporidium, Giardia, and enteric viruses) to Lake 

Carroll. 

 Determination of the correlation of fecal contamination (determined using 

FIB) with densities of V. vulnificus in tidally-influenced brackish, 

estuarine, and marine waters and oysters harvested from them. 



www.manaraa.com

 

11 
 

 Characterization of other Vibrio spp. which may confound traditional 

phenotypic and genotypic methods for enumeration of V. vulnificus in 

water and oysters. 

 Evaluation of strain-dependent differences in expression of a sodium-

phosphate transport (encoded by nptA) which is hypothesized to influence 

virulence in V. cholerae. 

 Assessment of how various factors including salinity, phosphate 

concentration, and pH affect expression of the nptA gene in a variety of V. 

vulnificus strains representing all three biotypes. 

Research Significance 

 The research goals and objectives identified will provide useful insights regarding 

reservoirs of FIB, MST markers, and allochthonous pathogens in an inland Florida lake.  

The study present will advance knowledge of fecal contamination as well as human 

pathogens which are contributed as a result of stormwater runoff.  Furthermore, the use of 

sediments and SAV to act as reservoirs of FIB leading to the persistence of a native 

population of enterococci in this lake highlights a fault in the FIB paradigm and suggests 

the usefulness of using a toolbox of MST tools to accurately assess water quality and 

human health risk.  The intended benefit of these findings is to better inform resource 

managers of tools which may be used, as well as potential limitations of traditional 

methods, in evaluating and remediating recreational water quality. 

 Evaluation of water quality and physicochemical parameters of watersheds will 

also provide useful insights as to how these factors interact to affect the ecology and 

density of autochthonous pathogens such as V. vulnificus.  Comparison of two culture-
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based methods of V. vulnificus enumeration (direct plating and MPN enrichment) in 

conjunction with a rapid qPCR method has also revealed the presence of other vibrios, 

most prominently V. sinaloensis, which are phenotypically indistinguishable from V. 

vulnificus, but which have not been previously identified in water and oysters.  Molecular 

evaluation of V. sinaloensis using primer sets previously thought to be specific to V. 

vulnificus highlights a need for more rigorous species confirmation, as V. sinaloensis has 

shown cross-reactivity to these primer sets and may lead to an overestimate of V. 

vulnificus abundance.  Furthermore, growth comparison of the two species suggests that 

while V. sinaloensis may outcompete V. vulnificus in certain environmental reservoirs, 

the traditional enrichment medium used does preferentially favor the growth of V. 

vulnificus. 

 Assessment of differential nptA gene expression among V. vulnificus strains has 

provided data that shows for the first time that strains more commonly associated with 

environmental reservoirs express and regulate this gene similarly, and that the expression 

pattern is different from strains isolated from clinical cases.  This finding may have 

important implications in understanding V. vulnificus virulence as well as the virulence 

mechanism of other human pathogens which also possess this gene.  The gene was shown 

to be differentially regulated in response to pH and salinity among strain types and was 

linked to more rapid growth when expressed at higher levels, suggesting that it may play 

a role in rapid growth during host colonization. 
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CHATPER 2: ASSESSMENT OF SOURCES OF HUMAN PATHOGENS 

AND FECAL CONTAMINATION IN A FLORIDA FRESHWATER 

LAKE1 

Introduction 

Fecal indicator bacteria (FIB) have been used for more than a century as 

surrogates for human enteric pathogens and are monitored to assess the likelihood of 

fecal contamination and elevated health risk in recreational waters.  Although correlations 

between elevated FIB concentrations and waterborne illness have been reported (163, 

179), weak or no correlation with specific enteric pathogens such as Salmonella, Giardia, 

and Cryptosporidium, and enteric viruses have also been reported (66, 97).  Poor 

correlations between FIB and pathogens may be due to extended persistence of FIB in 

environmental waters (3), sediment (6, 26-28), and submerged aquatic vegetation (SAV) 

(6, 27, 49).  Resuspension of FIB from sediments and SAV (3, 6, 28, 43) could 

potentially lead to beach closures even though human health risk from such reservoirs is 

very poorly understood (48).  Stormwater run-off has also been implicated as a source of 

FIB (23, 80, 114) and potentially human pathogens (113). 

While environmental reservoirs and extended persistence of FIB in the 

environment confound the utility of FIB as predictors of waterborne pathogens, these 

bacteria are also known to be harbored in the digestive tracts of most animals, thus 

providing no interpretation of fecal contamination sources (70).  To overcome this 

                                                 
1This chapter has been submitted to Water Research.  Co-authors included Kenneth H. Reckhow (RTI 
International, Research Triangle Park, NC), Jerzy Lukasik (Biological Consulting Services, Gainesville 
FL), and Valerie J. Harwood (University of South Florida, Tampa, FL). 
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limitation, microbial source tracking (MST) methods which target genes unique to 

microbes associated with a particular host species or group have been employed to 

identify sources of fecal contamination (11, 106, 133). 

The presence of fecal contamination from human sources has been reported to 

represent the highest risk to human health compared to pollution from other sources 

(163).  A wide variety of microbial targets have been exploited as MST markers to 

identify human sources (11, 106, 133).  Specific genes from several bacterial species 

have been identified as human-associated targets for these assays, including the esp gene 

Enterococcus faecium (a gram-positive, aerotolerant species) or a segment of the 16S 

rRNA gene of human-associated Bacteroides (HF183) (11, 133).  The esp gene encodes a 

putative virulence factor found in strains associated with human illness (133).  

Bacteroides spp. are gram-negative, strict anaerobes and are generally obligate symbionts 

of the gastrointestinal tract that tend to co-evolve with host species (77), making them 

well-suited for identification of fecal contamination sources (10).  Similarly, assays to 

detect viral markers indicative of human contamination have also been developed, such 

as the one to detect the conserved T-antigen of human polyomaviruses (HPyVs) (106).  

HPyVs are shed in urine and feces of infected individuals, and up to 60% of adults are 

asymptomatically infected (17, 107, 144).  Inclusion of MST assays from 

morphologically and physiologically diverse microbes is advantageous in studies to 

detect human contamination as these markers may be subject to differing fates or 

transport mechanisms in the environment (8, 81), which may prove more or less 

representative of pathogen presence. 
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Many human pathogens can be transmitted during recreational water use, 

including bacteria such as Salmonella, protozoa such as Cryptosporidium and Giardia, 

and enteric viruses (32).  All of these pathogens with the exception of enteric viruses are 

known to be contributed from both human and non-human sources (52, 151, 169); 

however, zoonotic infection of humans represents a serious health concern (61, 131, 149).  

Unfortunately, testing for a multitude of known human pathogens is problematic due to 

the high cost associated with these assays as well as diversity of known pathogens; 

however, representative pathogens may provide evidence as to the effectiveness of 

surrogate markers (e.g. FIB or MST markers) (54). 

In this study, FIB (fecal coliforms, Escherichia coli, and enterococci) were 

enumerated from waters, sediments, and SAV at Lake Carroll, a freshwater lake with a 

permitted swimming beach, in Tampa, FL.  This lake was selected for study due to 

frequent exceedences of both fecal coliform and enterococci regulatory standards for 

recreational waters (56, 67, 154), as well as the many stormwater inputs into this lake.  A 

previous study investigating potential sources for fecal contamination suggested that 

stormwater runoff may be a significant contributor of FIB, and potentially MST markers 

for human fecal contamination, particularly at the north end of the lake (67).  

Furthermore, the results of the previous study suggested that a naturalized population of 

enterococci persists in the lake’s water, sediments, or SAV, which might be disturbed 

thus reintroducing these bacteria into the water column (6, 67).  The primary goals of this 

study were to i) determine the extent of fecal contamination in the lake and assess 

whether contamination was of human origin and was indicative of pathogen presence, ii) 

evaluate the potential for sediments and SAV to act as reservoirs for FIB, iii) determine 
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whether stormwater runoff or the stormwater infrastructure may serve as a reservoir for 

FIB, MST markers, or pathogens, and iv) develop a Bayesian model using concentrations 

of FIB, occurrence of MST markers, frequency of pathogen detection, and 

physicochemical parameters (e.g. temperature and salinity) to determine which factors 

may be predictive of elevated FIB densities and elevated human health risk, as 

determined by the presence of human pathogens. 

Materials and Methods 

Sample Collection.  Seven sites at a freshwater lake surrounded by a suburban residential 

neighborhood in Tampa, FL (28°03’05.63” N, 82°29’14.85” W), were sampled on a 

monthly basis from April 2008 to March 2009 (Figure 2.1).  Sites were selected around 

the circumference of the lake.   A primary criterion for site selection was that the site was 

located either directly at a stormwater outfall to the lake or in proximity of a stormwater 

outfall.  The stormwater infrastructure upstream of outfalls varied and consisted of a 

baffle box (site 3), a continuous deflection system (CDS) (site 4), or no treatment (sites 5, 

6, 7).  Site 6 was located on the southeast of the lake and was expected to be least 

impacted by stormwater runoff (stormwater outfall was on the opposite bank of the lake, 

approximately 0.6 km away).    Two sites were located on a permitted swimming beach 

(sites 1 and 2), which was not directly impacted by stormwater, and these sites were 

sampled to assess potential health risk based on FIB concentrations, MST marker 

presence, and detection of human pathogens.  In addition, the effect of sediment 

resuspension by bathers on FIB concentrations as well as the presence of MST markers 

and pathogens was assessed at the beach (site 1). 
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Ten sampling events were conducted at all sites, with an additional sample event 

at stormwater outfalls (sites 3, 4, and 5) during a major rain event in December (0.75 

inches rain immediately prior to sampling).  Because stormwater runoff was hypothesized 

to be a major source of human fecal contamination and pathogens, an opportunistic 

sampling strategy was employed to capture peak-flow conditions, where possible, at sites 

located directly at stormwater outfalls to the lake.  Grab samples of water (1 L) were 

collected in duplicate at each site for FIB and MST analyses.  For pathogen analysis, 

larger volumes were collected or filtered in the field (see below). 

Sediment and SAV samples (40 g wet weight) were collected by hand at five and 

three sites, respectively, for FIB enumeration, and sites were rotated at each sampling 

event.  Site rotation was performed because funding limitations precluded sampling each 

matrix at each site. Sediment and SAV samples were collected at all sites at least once; 

however, sampling sites which had high SAV cover were sampled more frequently for 

SAV while those predominantly uncovered were sampled more frequently for sediments.  

Rotation allowed for sampling of most sites several times regardless of bottom cover to 

capture temporal variability in these matrices.  All samples were collected in sterile 

containers, transported in a cooler on ice, and processed within 6 hours of sample 

collection.  Physicochemical parameters (temperature, salinity, dissolved oxygen, pH, 

and specific conductivity) were also measured at each site.  In addition, SAV was 

collected via a modified rake toss methodology (4) from the shore in order to speciate 

plants.  SAV coverage was determined by visual inspection as described previously (9). 

Enumeration of FIB.  Fecal indicator bacteria were enumerated from water, sediment, 

and SAV samples via standard membrane filtration (47 mm nitrocellulose filters, 0.45 
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µm pore size) for Escherichia coli (157), fecal coliforms (2), and enterococci (156).  

Volumes filtered for FIB, MST, and pathogen analysis were varied based on standard and 

previously published methods (2, 64, 107, 133, 155-158).  Volumes filtered included 1 

ml, 10 ml, and 100 ml for water samples.  Sediment and SAV samples were diluted 1:10 

(wt/vol) in sterile buffered water (2) and sonicated to release bacteria adhering to particle 

surfaces (3) prior to filtration.  Volumes filtered for these matrices included 1 ml, 10 ml, 

and 25 ml, filtered in duplicate. FIB concentrations were reported as CFU × 100 ml-1 for 

water or CFU × 100 g-1 (wet weight) for sediment and SAV. 

 Sediments were disturbed at the beach by simulating recreational activity, i.e. by 

walking at approximately calf-depth at the beach site (site 2) during two sampling events 

in July 2008 and March 2009.  This activity followed collection of the initial water 

sample in order to avoid biasing the monthly sampling results. Water samples (1 L) were 

collected immediately following disturbance of the sediment, just below the surface of 

the water, and these samples were processed in duplicate in the same way as water 

samples. 

MST Assays.  Water samples were processed using the previously published culture/PCR 

method for detection of the esp gene of Enterococcus faecium (88, 89, 133).  Detection of 

HPyVs and HF183 were also performed using previously described, endpoint PCR 

methods (64, 89).  Briefly, water samples were acidified to pH 3.5 with HCl, and 500 ml 

of sample was concentrated via filtration (nitrocellulose filter, 0.45 µm pore size, 47 

mm).  Filters were placed in PowerBead tubes of the PowerSoilTM DNA kit (Mobio, 

Carlsbad, CA) and either processed immediately or frozen at -20°C for up to five days 

prior to DNA extraction.  DNA extraction was carried out following the manufacturer’s 
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instructions for the PowerSoil™ DNA kit (Mobio, Carlsbad, CA).  DNA was then used 

as template using previously described primer sets and PCR reaction conditions (11, 

107). 

Controls for inhibition were performed using composite water samples from all 

sites seeded with approximately 100 cells of Ent. faecium (C68) into 300 ml of water for 

esp or 192 viral particles of the BK virus (ATCC VR 837) to 500 ml of water for HPyVs 

and HF183.  In addition, each set of PCR reactions included a positive control consisting 

of 2µl of DNA extracted from Ent. faecium C68 for esp, or 2µl of plasmid containing the 

target sequence for either HF183 or HPyVs.   Method blanks consisting of sterile 

buffered water (300 ml for esp and 500 ml for HPyVs and HF183) were also subjected to 

all methodological steps from filtration through PCR as negative controls for 

contamination.  An extraction blank (empty PowerBead tube – no filter added) was 

subjected to all steps from DNA extraction through PCR as a negative control. 

Pathogen Detection.  At each sample event, water samples from two sites were analyzed 

for pathogens (Salmonella, Cryptosporidium, Giardia, and enteric viruses).  Pathogen 

analysis at more than two sites per sampling was cost-prohibitive.  Initially (April to 

November), pathogen sampling was conducted at both beach sites (sites 1 and 2) as these 

sites were most frequently utilized for recreational bathing.  Due to a heavy rain event 

resulting in peak-flow conditions, however, pathogen sampling was switched from site 1 

to site 4 in December to evaluate the potential for the stormwater infrastructure or 

stormwater runoff to harbor or contribute pathogens, and continued at site 4 through 

March. 
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Culture-based detection of Salmonella was performed as described previously 

(89). Briefly, one liter of water was concentrated via filtration (0.45 µm pore size, 45 mm 

nitrocellulose filter). The filter was then placed in 100 ml buffered peptone water and 

enriched at 37°C overnight.  Twenty milliliters of the enrichment culture was then diluted 

1:1 in selective media (2X Rappaport-Vasiliads RV-10 broth; Difco Laboratories Inc., 

Defroit, MI), and plated on XLT-4 and Salmonella-Shigella agar.  Putative Salmonella 

colonies (based on morphology and H2S production) were confirmed via PCR targeting 

the invA gene (89, 108). 

For detection of protozoa and enteric viruses, water samples (up to 100 L) were 

concentrated in the field using a Diaphragm pump (8000 series, Shurflo Manufacturing 

USA).  Giardia and Cryptosporidium were concentrated by filtration using Envirochek 

HV cartridge capsule filters (Pall Corp., Port Washington, NY). Following filtration, 

samples were shipped on ice overnight to Biological Consulting Services (Gainesville, 

FL) and processed by immunomagnetic separation and immunofluorescent antibody 

detection according to U.S. EPA method 1623 (158). Results were reported as cysts or 

oocysts × 100 L-1. 

Enteric viruses were concentrated from up to 400 L water by filtration through a 

Virusorb 1MDS filters (Cuno, Inc. Meriden, CT), which were shipped on ice overnight to 

Biological Consulting Services (Gainesville, FL) for processing via standard methods and 

EPA 600/R95/178  (155).  Filters were eluted using 1 L of 1.5% beef extract (BBL V) in 

0.05 M glycine (pH 9.5, 25°C). The eluate was concentrated by organic flocculation and 

assayed for enterovirus by the observation of cytopathic effects (CPE) on recently passed 

(2-4 days) Buffalo Green Monkey (BGM; Passage 120-180) and MA-104 (ATCC CRL-



www.manaraa.com

 

21 
 

2378.1) cell lines.  All analysis was conducted as per EPA 600/R95/178. (155).  Positive 

and negative controls along with matrix spikes were conducted as indicated in the 

method.  All analysis was done in accordance to NELAC accreditation standards 

(ISO17025). For both protozoan and viral pathogens, filtration was stopped once the 

required volume was filtered or after 45 minutes. 

Statistical Analysis.  FIB concentrations were log10 transformed to obtain a normally 

distributed dataset.  One-way analysis of variance (ANOVA) was used to compared 

concentrations of FIB among sites and matrices followed by Tukey’s post hoc test (α = 

0.05) using GraphPad Instat software, version 3.0 (San Diego, CA).  Disturbance 

experiment data were analyzed via unpaired t-test using average FIB concentrations for 

each sampling date (two replicates per date).  Linear (Pearson) regression and physical 

data correlation analysis was also performed using this software (α = 0.05).  Comparison 

of the frequency (percentage of positive samples) of MST and human pathogen detection 

was performed via two-tailed Fisher’s exact test using GraphPad Instat software, version 

3.0 (San Diego, CA).  To compare frequency of MST and pathogen detection in wet vs. 

dry weather conditions, sites which received ≥ 0.4 inches of rain up to 24 hours prior to 

sampling were considered to be sampled during wet weather conditions.  Relationships 

between MST marker, pathogen presence, and FIB concentrations were determined via 

binary logistic regression (α = 0.05) calculated using PASW software, version 17 (SPSS, 

Chicago, IL). 

Bayesian Analysis.  A Bayesian network structure was developed using Hugin software 

(www.hugin.com; Aalborg, Denmark) relating FIB concentrations, antecedent rainfall 

one week prior to sampling, temperature, and pathogen presence; these variables were 
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selected based on a combination of expert judgment and a machine learning algorithm in 

Hugin. Only data from sites at which pathogens were analyzed (sites 1, 2, and 4) were 

used in the model.  Data for each variable were sorted into four levels or ‘bins’ to provide 

an equal distribution of the data across bins (i.e., 25% of the data were placed in each 

bin); these data were used to generate a prior probability model of the relationships 

among nodes (see Figure 2.3) (125).  Predictive models were then generated to determine 

the effect of using fecal coliforms or temperature and rainfall as predictive variables 

(Figure 2.4 and 2.5).  In these models, 100% of the data were assigned to a bin and the 

resultant distribution of each variable  given these conditions was determined (e.g. is 

there a higher probability of pathogen absence when fecal coliform concentrations are < 

45 CFU × 100ml-1?). 

Results 

Characteristics of SAV.  Aquatic macrophytes (SAV) were speciated and the percentage 

of cover was estimated on each sample date.  Benthos vegetation cover varied from < 5% 

(sites 1 and 2) to nearly 100% (site 5).  The native species Vallisneria americana was 

identified at several sites; however, the invasive species Hydrilla verticillata was the 

most commonly collected.  Interestingly, at sites where no MST markers were detected, 

the native species persisted, while Hydrilla was more abundant at sites where markers 

were sporadically detected (see MST, below). 

Fecal Indicator Bacteria Concentrations.  Exceedences of Florida regulatory standards 

for FIB concentrations were common among all sites and sample dates.  Samples 

collected immediately after a rain event of 0.75 in were considered separately, due to the 

high flow conditions and high levels of FIB observed on that date. From 69 samples 
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collected over the course of the study, enterococci concentrations exceeded regulatory 

guidelines (61 CFU × 100 ml-1) in 65.2% of samples, fecal coliforms exceeded the 

standard (400 CFU × 100 ml-1) in 44.9% of samples, and E. coli exceeded the standard 

(235 CFU × 100 ml-1) in 27.5% of samples. At the swimming beach sites (1 and 2), 

enterococci limits were exceeded in 18 of 20 samples (90%), fecal coliform in 7 of 20 

(35%), and E. coli in 4 of 20 (20%).  Excluding the December rain event, fecal coliforms 

concentrations (CFU × 100 ml-1) ranged from 3.5 × 100 – 4.0 × 104, E. coli from <1.0 

(undetected) to 3.8 × 104, and enterococci from 2.0 × 100 – 2.6 × 104.  Concentrations 

(log10-transformed) of FIB at each site over the entire sampling period (including the 

December rain event) are shown in Figure 2.  FIB concentrations during the December 

rain event exceeded both bacteriological standards at the three sites sampled (sites 3, 4, 

and 5), with concentrations ranging from 9.0 × 102 to 4.1 × 104 CFU × 100 ml-1 for fecal 

coliforms, 5.0 × 102 to 4.1 × 104 CFU × 100 ml-1 for E. coli, and 7.5 × 102 to 1.7 × 104 

CFU × 100 ml-1 for enterococci).  No significant differences in FIB concentrations in the 

water column were observed among the seven sampling sites (P = 0.68, 0.48, 0.49 for 

fecal coliforms, E. coli, and enterococci, respectively, excluding December rain event 

samples; n = 10 for sites 1-4, 6, and 7; n = 9 for site 5).  Mean FIB concentrations in SAV 

and sediment samples throughout the lake were relatively high (ranging from 2.1 × 103 to 

8.7 × 104 CFU × 100 g-1 for SAV and 1.6 × 102 to 1.8 × 104 CFU × 100 g-1 for 

sediments). 

Linear regression analysis was performed to assess the relationship between FIB 

concentrations in the water column and on SAV or in sediment.  Concentrations of both 

E. coli and enterococci on SAV were significantly positively associated with 
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concentrations of these bacteria in the water column (r2 = 0.28, P = 0.0030 and r2 = 0.41, 

P = 0.0002, respectively; n =29 for both), but not for fecal coliforms (n = 29, r2 = 0.02, P 

= 0.5204).  Concentrations of all FIB in sediments were positively related to 

concentrations in the water column (r2 = 0.33, P < 0.0001; r2 = 0.24, P = 0.0004; and r2 = 

0.34, P < 0.0001 for fecal coliforms, E. coli, and enterococci, respectively; n = 50 for all 

three). 

A disturbance experiment was conducted in the swimming area of the beach site 

(site 1) in July 2008 and March 2009 to assess the effects of sediment resuspension on 

FIB concentrations in the water column.  Significant increases in enterococci 

concentrations were observed post-disturbance in the water column on both dates (n = 2), 

i.e. from 2.85 to 3.43 and from 2.76 to 3.93 log10 CFU × 100 ml-1, on respective dates, 

(log ratios of disturbed vs. undisturbed concentrations of 1.2 and 1.4 respectively, P = 

0.0371).  Increases in fecal coliforms and E. coli were also observed (log ratios ranging 

from 1.04 – 1.22) but were not statistically significant.  Concentrations increased from 

3.39 to 3.53 and 1.73 to 2.11 log10 CFU × 100 ml-1 for fecal coliforms and E. coli, 

respectively, in July.  In March fecal coliform concentrations increased from 0.74 to 0.81 

log10 CFU × 100 ml-1, but E. coli was undetectable before and after disturbance (< 4.5 × 

10-1 CFU × 100 ml-1). 

Among physical parameters measured, water temperature showed positive 

correlations with all FIB (r2 = 0.38, P < 0.0001, r2 = 0.15, P = 0.001, r2 = 0.13, P = 0.002 

for fecal coliforms, E. coli, and enterococci, respectively).  In addition, pH was weakly 

positively correlated with fecal coliform concentrations in the water column (r2 = 0.06, P 
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= 0.038), and dissolved oxygen was weakly positively correlated with enterococci 

concentrations (r2 = 0.09, P = 0.011). 

Cumulative rainfall 24 hours, 72 hours, and one week prior to sampling was 

analyzed for correlation with fecal coliform, E. coli, and enterococci concentrations in the 

water (n = 69) and sediment (n = 50) (Table 2.1).  In the water column, weak correlations 

between 24-hour rainfall and fecal coliforms or enterococci were observed among all 

sites (r2 = 0.10 and 0.09, P < 0.05).  Antecedent rainfall accumulated over 72 hours was 

only weakly correlated with enterococci concentrations in the water column (r2 = 0.06, P 

= 0.0479), but no correlation was observed between rainfall accumulated over one week 

with FIB concentrations.  Correlations between rainfall and water column FIB 

concentrations at two stormwater outfall sites (sites 3 and 7) were stronger for 24-hour 

and 72-hour antecedent rainfall for fecal coliforms and enterococci (r2 ranging from 0.50 

to 0.88, P < 0.05).  Only two sites (sites 2 and 3) showed correlations between weekly 

rainfall and either fecal coliform or enterococci concentrations (r2 between 0.73 and 0.82, 

P < 0.05). Although peak flow was measured at three stormwater outfalls during a major 

rain event in December, and ranged from 0.7 – 3.3 cubic meters per sec, these data were 

not sufficient to produce a robust statistical analysis. 

FIB concentrations in the sediment (n = 50) were weakly to moderately positively 

correlated with rainfall 72 hours and one week prior to sampling among all sites (r2 from 

0.09 to 0.027, P < 0.031; Table 2.1), but were rarely correlated with 24 hour antecedent 

rainfall.  At beach site 1, moderate positive correlations were observed between fecal 

coliform and E. coli concentrations in sediment and 72 hour or weekly antecedent rainfall 

(r2 = 0.47-0.61, P < 0.03).  At beach site 2, concentrations of all FIB were strongly 
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associated with rainfall accumulated during these time periods (r2 = 0.64-0.95); these 

relationships were significant for fecal coliforms and enterococci, however, the 

relationship between E. coli concentrations and either 72 hour or weekly antecedent 

rainfall did not quite reach significance (P = 0.0569 and 0.0529 for 72 hour and weekly 

antecedent rainfall).  At site 6, only fecal coliform concentrations in the sediment were 

moderately correlated with weekly prior rainfall (r2 = 0.43, P = 0.0394).  In terms of 24 

hour antecedent rainfall, only enterococci concentrations in the sediment at site 7 were 

positively correlated (r2 = 0.69, P = 0.0106). 

MST.  Human-associated markers for fecal contamination (esp, HPyVs, and Bacteroides 

HF183) were detected sporadically at five sites (Table 2.2).  The HF183 marker was 

detected most frequently (10.1% of samples tested) followed by esp (7.6%) and HPyVs 

(6.8%); however, the difference in frequency of detection of MST markers was not 

significant (P = 0.7445).   Co-occurrence of MST markers in any given sample was 

observed only during rain events in July and December.  Detection of all three markers at 

a site was observed only once in December (site 5), and this was the only time HF183 

was detected in conjunction with other MST markers.  The esp and HPyVs markers were 

both detected at 28.6% of sites where at least one of these markers was present (n = 7). 

No human markers were detected at site 6 during the study period.  MST markers 

were also not detected at one beach site (site 1), although the HF183 marker was detected 

once at the other (site 2).  Human markers were occasionally detected at the remaining 

sites (20 to 33% of samples per site, Table 2.1).  A high proportion of sites (43%, n = 7) 

tested positive for at least one human-associated MST marker during a rain event in July.  

To compare frequency of MST marker detection during wet and dry conditions, data 
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from sites which received ≥ 4 inches of rainfall 24 hours prior to sampling were pooled.  

MST markers were detected significantly more frequently (37.5%) at sites sampled 

during wet conditions (n = 16) compared to those sampled during dry conditions (12.5%, 

n = 56; P = 0.0140).   Among the MST markers, only detection of the esp gene was 

correlated with FIB concentrations (r2 = 0.464, P < 0.0001; r2 = 0.194, P = 0.013; r2 = 

0.39, P < 0.0001 for fecal coliforms, E. coli, and enterococci, respectively).  Detection of 

HPyVs was also weakly positively correlated with esp detection (r2 = 0.149, P = 0.018). 

Pathogens.  Testing for bacterial, protozoan, and viral pathogens was conducted at beach 

sites 1 and 2 through the November sampling event (Table 2.2). Beginning with the rain 

event sampling in December, pathogen testing was moved from the beach (site 1) to a 

stormwater outfall downstream of the CDS unit (site 4) to assess pathogen contribution 

from stormwater run-off.  Each of the pathogens was detected at least once at each beach 

site (sites 1 and 2) throughout the study period.  Salmonella was detected least frequently 

(10% of samples), while Cryptosporidium, Giardia, and enteric viruses were each 

detected in 20% of samples; however, the differences in detection frequency were not 

significant (P = 0.2949).  Pathogens, like MST markers, were detected significantly more 

frequently during wet weather sampling events (100%, n = 5) compared to dry weather 

samplings (40%, n = 15; P = 0.0004). It is notable that pathogens were detected at both 

beach sites on each sampling event from June through November (66.7% of samples), 

when the beach was likely to be used more frequently by recreational bathers. 

At sites where pathogen testing was conducted, pathogens were detected 

significantly more frequently than MST markers (Fisher’s exact test, P = 0.0007), and 

detection of pathogens was not correlated with MST marker detection (P = 0.43).  
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Interestingly, when pathogens were detected at a beach site, human MST markers were 

not detected, although during all sampling events except November, FIB concentrations 

exceeded Florida State standards for fecal coliforms, enterococci, or both, at both sites.  

Salmonella was detected during the rain event in December at site 4 in conjunction with 

HPyVs.  Both Giardia and enteric viruses were detected in January at site 4, although no 

human MST markers were detected during this sampling.  Importantly, among the three 

sites tested for pathogens during rain events (sites 1 and 2 in July and site 4 in 

December), at least one human pathogen was detected at each site. 

Bayesian Modeling.  A Bayesian net model relating the following measured variables 

(prior probabilities) at sites 1, 2 and 4 was generated: temperature, cumulative antecedent 

rainfall one week prior to sampling, enterococci, E. coli, fecal coliforms, and pathogens 

(Salmonella, Cryptosporidium, Giardia, or enteric viruses) (Figure 2.3). MST markers 

were not incorporated into the model due to the low frequency of detection.  Each 

variable and arrow represents a node, and its relationship with another variable.  

Observations were divided into discrete bins, each representing 25% of all observations.  

The data in Figures 2.3-5 should be interpreted following this example: for enterococci, 

25% of all observations were between 1.9 and 51 CFU × 100 ml-1 (lowest bin), and 25% 

were between 1168 and 25,600 CFU × 100 ml-1 (highest bin), while intermediate values 

were placed in the bins between lowest and highest.  Predictive models for Bayesian nets 

can be derived from the prior models by setting one variable at a given value, and asking 

what the predicted distribution of the other variables would be given this circumstance.  

The strongest association between FIB levels and pathogen detection was predicted when 

fecal coliforms were set at the lowest bin concentration –< 45 CFU × 100 ml-1. In this 
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circumstance, the probability of pathogen absence was 93% (Figure 2.4). Interestingly, 

while E. coli levels were also predicted to be low under these conditions (100% between 

1 and 60 CFU × 100 ml-1), the predicted probability of enterococci levels ranged fairly 

evenly from low to high levels (i.e., enterococci levels had little relationship with the 

probability of pathogen presence). 

In contrast, when temperature and cumulative antecedent rainfall were the 

predictive variables and each was fixed at their highest levels (Figure 2.5), the predicted 

relationship with pathogen detection was much weaker, i.e. the probability of pathogen 

presence was 59%.  This model was more predictive of enterococci and fecal coliform 

levels, as the probability of levels in the greater 50th percentile (top two bins) was greater 

than 90% (corresponding to > 257 CFU × 100 ml-1 enterococci and > 157 CFU × 100 ml-

1 fecal coliforms). Interestingly, E. coli did not follow the same pattern, as it had about 

equal probability of being in any of the top 3 bins (between 15 and 41,000 CFU × 100 ml-

1 when temperature and rainfall were elevated). 

Discussion 

 In this study, SAV, sediments, and stormwater runoff were evaluated as potential 

reservoirs and inputs of FIB and pathogens to an inland, freshwater, recreational lake 

located in a sub-tropical region of the US that is impacted by multiple stormwater 

outfalls.  Compared to coastal waters and the Great Lakes, inland waters are under-

studied, and a great deal remains to be learned about the ability of FIB and MST marker 

presence to predict the presence of human pathogens in such waters (48), particularly 

when nonpoint source pollution is the major contributor.  To provide the most robust and 

complete assessment of sources of fecal contamination in this lake, it was necessary to 
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conduct a multi-faceted study which investigated the potential of all of the 

aforementioned matrices to serve as reservoirs for FIB, MST markers, and human 

pathogens.  The effects of SAV and sediment resuspension (beach sand) on FIB densities 

were measured to assess their impact as significant reservoirs for FIB.  Furthermore, 

opportunistic sampling during or shortly after rain events was conducted at outfalls that 

delivered stormwater to the lake in order to assess the potential of stormwater run-off and 

the stormwater infrastructure to serve as a reservoir for FIB, MST markers, and human 

pathogens.  Due to the high cost associated with the analysis of the pathogens, only 

selected sites and samples were analyzed for pathogens.   

Concentrations of enterococci and E. coli isolated from SAV and concentrations 

of all FIB from sediment were positively correlated with FIB concentrations in the water 

column.  Lack of correlation between fecal coliform concentrations in SAV vs. the water 

column may indicate that fecal coliforms are predominantly contributed to the water 

column via sediment resuspension and/or fecal contamination events.  These data, as well 

as the observation of FIB concentrations (normalized to mass) one to two log units higher 

than those observed in the water (normalized to volume),  suggest that both matrices 

(SAV and sediment) serve as additional reservoirs of FIB, and enterococci in particular, 

which may contribute to high concentrations throughout the lake (7).  Even at sites where 

growing SAV was not abundant (e.g. beach sites 1 and 2), we observed that mats of 

vegetation frequently washed onshore in quantities that necessitated physical removal. 

These vegetation masses may have contributed to elevated FIB concentrations in the 

water by shedding FIB as they washed onshore.  A previous study conducted at Lake 

Michigan demonstrated the ability of E. coli populations to persist on Cladophora, and 
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suggested that the movement of algal mats via wave action may serve to inoculate waters 

and sediments with FIB (27).  Furthermore, a previous study of the enterococci 

population in this lake demonstrated that mesocosms with vegetation added maintained 

significantly higher enterococci densities than those without vegetation, and that > 96% 

of isolates were a single strain of Enterococcus casseliflavus (6). 

A prior study assessing FIB concentrations at both beach sites and the center of 

the lake found that concentrations of fecal coliforms were significantly lower at the 

center of the lake compared to the beach (mean concentration of 2.21 log10 CFU × 100 

ml-1  at beach sites vs. 1.10 in the center of the lake; P < 0.0001); however, no significant 

difference was observed in enterococci concentrations (mean concentration 2.40 log10 

CFU × 100 ml-1  at beach sites vs. 1.60 in the center of the lake; P = 0.0898) (67). Based 

on previous work and the findings in the current study, SAV harbors a naturalized 

population of enterococci and may also serve as a conveyance mechanism and reservoir 

for this population throughout the lake. 

Intentional sediment disturbance was shown to increase concentrations of 

enterococci in the water column; however, this result should be interpreted cautiously due 

to the small sample size (n = 2) tested.  Sediment was previously shown to be a 

significant reservoir for E. coli in an estuarine setting, increasing concentrations of E. coli 

in the water column due to tidal fluctuation (137).  Furthermore, sediments have been 

previously shown to be reservoirs for pathogens as well as FIB suggesting that 

resuspension of sediments may result in elevated health risk (53), although evaluation of 

this finding was beyond the scope of this study.  Another study conducted at Lake Carroll 

and other watersheds extensively investigated the contributions of sediment to FIB 
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concentrations in water (7).  This study found that resuspended sediment may make a 

significant contribution to FIB concentrations in the water column in shallow waters (as 

were tested in the current work), but that in deeper waters or other sediment types than 

beach sand, FIB contribution from sediment is less significant (7).  The general practice 

of normalizing FIB concentrations to mass of habitat (e.g., CFU × g-1) can lead to 

misconceptions about the relative contribution of water, sediments, and SAV to overall 

microbial loads in an aquatic habitat, as the relative size of these reservoirs can vary 

greatly within and between water bodies (7). 

Rainfall was correlated to FIB concentrations in water and sediments as well as to 

detection of MST markers and human pathogens, suggesting that stormwater runoff, 

which may enter the water body from surface/subsurface flow or stormwater 

infrastructure, has a significant impact on water quality in this inland water.  Stormwater 

has been previously implicated as a reservoir or conveyance mechanism for human fecal 

contamination and pathogens (23, 80, 113, 114).  Detection of pathogens at site 4, where 

water was collected less than a meter from the stormwater outfall, suggest that bacterial, 

protozoan, and/or viral human pathogens are associated with stormwater runoff in this 

system and highlights a need to further investigate and remediate the stormwater 

infrastructure to protect surface waters. 

Based on the finding that each reservoir investigated showed the potential to 

harbor and/or contribute FIB to the water column, the association between FIB 

concentrations, as well as MST marker presence, and pathogens was more closely 

examined.  Exceedences of FIB standards were observed in 82% of samples in which a 

pathogen was detected (n = 11). The positive predictive value for each FIB (percentage of 
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samples in which a pathogen was detected when the regulatory limit was exceed) (69)  

toward pathogens was 67%, 50%, and 47% for fecal coliforms, E. coli, and enterococci, 

respectively, with false-positive rates (exceedence occurred without pathogen detection) 

of 33%, 50%, and 53%, respectively.  This suggests that FIB exceedences, while 

sometimes indicative of pathogen presence, are often observed in the absence of the 

pathogens tested and that fecal coliforms are most indicative of pathogen presence in this 

water body. 

Pathogen detection was not significantly correlated with detection of human MST 

markers (r2 = 0.04, P = 0.43).  At least two possible reasons for this discrepancy exist: (1) 

fewer samples and larger water volumes were analyzed for pathogens than for MST, so 

the samples were not directly comparable; and (2) with the exception of the enteric 

viruses, all of the pathogens tested can be shed by animals as well as humans (52, 151, 

169). The MST markers used here were chosen in part because of their demonstrated 

ability to detect sewage pollution in ambient water volumes of several hundred mL or 

less (64, 102, 106, 107, 133); however, improved methods for sample filtration and 

purification, which could allow processing of larger sample volumes for MST assays 

without inhibiting the PCR, would increase the sensitivity of these assays and would 

probably result in a higher frequency of co-detection of pathogens and MST markers 

when the contamination is from a human source (98). Conversely, the inclusion of 

markers for fecal contamination from animals such as birds, dogs, and raccoons, all of 

which are plentiful in the Lake Carroll watershed, may have resulted in better agreement 

between marker and pathogen detection; however, these methods were not generally 

available when the study was performed.  It is important to note that, regardless of 
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potential zoonotic sources of pathogens in this watershed, all of the pathogens studied 

have been shown to represent a risk to human health (61, 131, 149). 

The Bayes net model developed from the data collected from Lake Carroll found 

that increased water temperature and antecedent rainfall were predictive of elevated FIB 

concentrations in the water, particularly in the cases of enterococci and fecal coliforms. 

Covariance of temperature and rainfall was observed, which was expected due to the fact 

that the summer is Tampa’s rainy season.  The relationship between rainfall and FIB 

levels was corroborated in some instances by linear Pearson correlations (Table 2.1), and 

was particularly strong in sediments (antecedent rainfall 72 h or one week prior to 

sampling). However, conditions of elevated temperature and rainfall were not particularly 

predictive of pathogen presence (58.9% probability of detection).  In this system, fecal 

coliform concentrations were the single best predictor of pathogen detection, as the 

lowest level (< 45 CFU × 100 ml-1) corresponded with a low probability of pathogen 

detection (7%). These conditions corresponded with prediction of low E. coli levels (< 60 

CFU × 100 ml-1). The same relationship was not found for enterococci. Under conditions 

of low probability for pathogen detection, when fecal coliform and E. coli concentrations 

all fell into the two lowest bins, the probability of enterococci concentrations being 

greater than 258 CFU × 100 ml-1 was ~37%.  In all probability, the naturalized population 

of enterococci in Lake Carroll leads to consistently elevated enterococci levels, which 

negates the relationship between this FIB and pathogen presence. 

The construction of Bayesian networks has been previously demonstrated to be an 

effective tool for modeling processes affecting eutrophication of a water body (125).   

The current study demonstrates that the Bayes net model can also be an extremely helpful 
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tool for teasing apart the complex relationships among physical-chemical and biological 

parameters measured for water quality. In particular, the failure of enterococci to predict 

pathogen presence in this lake is an important finding. One of the hallmarks of Bayes nets 

is the flexibility to incorporate both data and expert judgment into a probabilistic model, 

which makes them a good fit for modeling indicator/pathogen relationships in 

environmental waters. 
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Table 2.1 - Correlations of FIB concentrations in the water and sediment with rainfall 24 
h, 72 h, and 7 days prior to sampling.  Individual sites for which no significant correlation 
was observed (α = 0.05) are not shown.  Bolded values are significant positive 
correlations. 

Matrix Site Indicator 24-hour Rainfall 72-hour Rainfall Weekly Rainfall 

W
at

er
 

All Fecal coliforms r2 = 0.10, 
P = 0.0076 

r2 = 0.04, 
P = 0.0927 

r2 = 0.03, 
P =0.1608 

E. coli r2 = 0.03, 
P = 0.1481 

r2 < 0.01, 
P = 0.5649 

r2 < 0.01, 
P = 0.6628 

Enterococci r2 < 0.01, 
P = 0.0122 

r2 = 0.06, 
P = 0.0479 

r2 = 0.04, 
P = 0.0861 

2a Fecal coliforms r2 =0.33, 
P = 0.0851 

r2 = 0.88, 
P < 0.0001 

r2 = 0.82, 
P = 0.0003 

E. coli r2 = 0.65, 
P = 0.0046 

r2 = 0.40, 
P = 0.0482 

r2 = 0.32, 
P = 0.0861 

Enterococci r2 = 0.13, 
P = 0.3054 

r2 < 0.01, 
P = 0.9578 

r2 < 0.01, 
P = 0.9388 

3b Fecal coliforms r2 = 0.52, 
P = 0.0181 

r2 = 0.28, 
P = 0.1156 

r2 = 0.21, 
P = 0.1747 

E. coli r2 = 0.01, 
P = 0.8409 

r2 < 0.01, 
P = 0.9375 

r2 < 0.01, 
P = 0.9263 

Enterococci r2 = 0.01, 
P = 0.8301 

r2 = 0.67, 
P = 0.0039 

r2 = 0.73, 
P = 0.0016 

7c Fecal coliforms r2 = 0.88, 
P < 0.0001 

r2 = 0.31, 
P = 0.0934 

r2 = 0.22, 
P = 0.1711 

E. coli r2 = 0.37, 
P = 0.0641 

r2 = 0.06, 
P = 0.4962 

r2 = 0.03, 
P = 0.6092 

Enterococci r2 = 0.83, 
P = 0.0002 

r2 = 0.50, 
P = 0.0229 

r2 = 0.39, 
P = 0.0540 

S
ed

im
en

t 

All Fecal coliforms r2 = 0.02, 
P = 0.2760 

r2 = 0.26, 
P = 0.0002 

r2 = 0.27, 
P = 0.0001 

E. coli r2 < 0.01, 
P = 0.7943 

r2 = 0.09, 
P = 0.0309 

r2 = 0.12, 
P = 0.0146 

Enterococci r2 = 0.06, 
P = 0.0961 

r2 = 0.20, 
P = 0.0010 

r2 = 0.21, 
P = 0.0009 

1a Fecal coliforms r2 = 0.10, 
P = 0.3820 

r2 = 0.60, 
P = 0.0087 

r2 = 0.61, 
P = 0.0074 

E. coli r2 < 0.01, 
P = 0.8962 

r2 = 0.47, 
P = 0.0298 

r2 = 0.52, 
P = 0.0191 

Enterococci r2 < 0.01, 
P = 0.8913 

r2 = 0.33, 
P = 0.0817 

r2 = 0.38, 
P = 0.0571 

2a Fecal coliforms r2 = 0.24, 
P = 0.3206 

r2 = 0.96, 
P = 0.0007 

r2 = 0.95, 
P = 0.0010 

E. coli r2 = 0.01, 
P = 0.8214 

r2 = 0.64, 
P = 0.0569 

r2 = 0.65, 
P = 0.0529 

Enterococci r2 = 0.12, 
P = 0.4967 

r2 = 0.77, 
P = 0.0220 

r2 = 0.76, 
P = 0.0226 

6c Fecal coliforms r2 = 0.05, 
P = 0.5347 

r2 = 0.35, 
P = 0.0734 

r2 = 0.43, 
P = 0.0394 

E. coli r2 = 0.05, 
P = 0.5181 

r2 = 0.25, 
P = 0.1408 

r2 = 0.32, 
P = 0.0897 

Enterococci r2 = 0.09, 
P = 0.4011 

r2 = 0.13, 
P = 0.2949 

r2 = 0.12, 
P = 0.3214 
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7c Fecal coliforms r2 = 0.26, 
P = 0.2009 

r2 = 0.30, 
P = 0.1621 

r2 = 0.22, 
P = 0.2411 

E. coli r2 = 0.03, 
P = 0.6643 

r2 < 0.01, 
P = 0.8140 

r2 < 0.01, 
P = 0.8784 

Enterococci r2 = 0.69, 
P = 0.0106 

r2 = 0.41, 
P = 0.0851 

r2 = 0.33, 
P = 0.1354 

aNo stormwater structure 
bBaffle box stormwater infrastructure 
cStormwater outfall, no treatment
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Table 2.2 – Results of MST marker and pathogen analysis by site and date.  Presence/absence of human polyomavirus (HPyVs), 
human-associated Bacteroides (HF183), and the esp gene of Ent. faecium were tested at each site on each date unless otherwise noted 
(NT).  Assays for pathogen detection including Salmonella (Sal), Cryptosporidium (Crypto), Giardia, and enteric viruses (EV) were 
performed at sites 1 and 2 from April through November and at sites 2 and 4 from December through March. Positive tests are bolded 
and cells containing positive results are heavily outlined. 

Date Sampling Sites 

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 

M
S

T
a 

P
ath

ogens
b 

M
S

T
 

P
ath

ogens 

M
S

T
 

P
ath

ogens 

M
S

T
 

P
ath

ogens 

M
S

T
 

P
ath

ogens 

M
S

T
 

P
ath

ogens 

M
S

T
 

P
ath

ogens 

4/15 

esp (-), 
H

F183 (-), 
H

P yV
s (-)

S
al (-),  

C
rypto (-), 

G
iardia (-), 
E

V
 (-) 

esp (-), 
H

F183 (-), 
H

PyV
s (-)

S
al (-),  

C
rypto (-), 

G
iardia (-),  
E

V
 (-) 

esp (-), 
H

F183 (-), 
H

P yV
s (-)

N
T

 

esp (-), 
H

F183 (-), 
H

PyV
s (-)

N
T

 

esp (-), 
H

F183 (-), 
H

PyV
s (-)

N
T

 

esp (-), 
H

F183 (-), 
H

PyV
s (-)

N
T

 

esp (-), 
H

F183 (-), 
H

PyV
s (-)

N
T

 

5/27 

esp (-), 
H

F183 (-), 
H

P yV
s (-)

S
al (-),  

C
rypto (-), 

G
iardia (-), 
E

V
 (-) 

esp (-), 
H

F183 (-), 
H

PyV
s (-)

S
al (-),  

C
rypto (-), 

G
iardia (-),  
E

V
 (0.6) 

esp (-), 
H

F183 (-), 
H

PyV
s

(-)

N
T

 

esp (-), 
H

F183 (-), 
H

PyV
s (-)

N
T

 

esp (-), 
H

F183 (-), 
H

PyV
s (-)

N
T

 

esp (-), 
H

F183 (-), 
H

PyV
s (-)

N
T

 

esp (-), 
H

F183 (-), 
H

PyV
s (-)

N
T

 

6/24 

esp (-), 
H

F183 (-), 
H

P yV
s (-) 

S
al (-),  

C
rypto (-), 

G
iardia (-), 
E

V
 (0.5) 

esp (-), 
H

F183 (-), 
H

PyV
s

(-)

S
al (-),  

C
ryp

to (2.2), 
G

iardia (-),  
E

V
 (1.7) 

esp (-), 
H

F183 (-), 
H

PyV
s

(-)

N
T

 

esp (+
), 

H
F183 (-), 

H
PyV

s
(-)

N
T

 

esp (-), 
H

F183 (-), 
H

PyV
s (-) 

N
T

 

esp (-), 
H

F183 (-), 
H

PyV
s (-) 

N
T

 

esp (-), 
H

F183 (-), 
H

PyV
s (-) 

N
T
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7/29c 

esp (-), 
H

F183 (-), 
H

P yV
s (-) 

S
al (-), 

C
ryp

to (3.2), 
G

iardia (6.5), 
E

V
 (-) 

esp (-), 
H

F183 (-), 
H

PyV
s

(-)

S
al (+

),  
C

rypto (88.2), 
G

iardia (-),  
E

V
 (-) 

esp (-), 
H

F
183 (+

) 
H

PyV
s

(-)

N
T

 

esp (-), 
H

F183 (-), 
H

PyV
s (-) 

N
T

 

esp (+
), 

H
F183 (-), 

H
P

yV
s

(+
)

N
T

 

esp (-), H
F183 

(-), H
PyV

s (-) 

N
T

 

esp (+
), 

H
F183 (-), 

H
P

yV
s

(+
)

N
T

 

10/1c, d 

esp (-), 
H

F183 (-) 

S
al (-),  

C
rypto (-), 

G
iardia (1.9), 

E
V

 (-) 

esp (-), 
H

F183 (-) 

S
al (-),  

C
rypto (-), 

G
iardia (5.3),  

E
V

 (-) 

esp (-), 
H

F183 (-) 

N
T

 

esp (-) 
 H

F183 (-) 

N
T

 

N
T

  

N
T

 

esp (-), 
H

F183 (-) 

N
T

 

esp (-), 
H

F183 (-) 

N
T

 

11/18 

esp (-), 
H

F183 (-), 
H

P yV
s (-)

S
al (+

), 
C

rypto (-), 
G

iardia (-), 
E

V
 (-) 

esp (-), 
H

F183 (-), 
H

PyV
s

(-)

S
al (-),  

C
ryp

to (0.5), 
G

iardia (-),  
E

V
 (-) 

esp (-), 
H

F183 (-), 
H

PyV
s

(-)

N
T

 

esp (+
), 

H
F183 (-), 

H
PyV

s (-)

N
T

 

esp (-), 
H

F183 (-), 
H

PyV
s (-)

N
T

 

esp (-), 
H

F183 (-), 
H

PyV
s (-)

N
T

 

esp (-), 
H

F183 (-), 
H

PyV
s (-)

N
T

 

12/11c,

e N
T

 

N
T

 

N
T

 

N
T

 

esp (+
), 
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aMST target and PCR result (+ or -) 
bPathogen target detected and result: presence/absence (+/-) for Salmonella or quantities for Cryptosporidium, Giardia, or enteric 
viruses (oocysts, cysts, or MPN, respectively, per 100 L). 
cRain event (at least 0.5 inches of rainfall prior to sampling). 
dA method blank for HPyVs was contaminated, so results are not reported for this target.  
eSampling was conducted during a major rain event (0.75 inches of rainfall < 1 hour prior to sampling). 
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Figure 2.1 – Lake Carroll sites: 1 and 2, White Sands Beach; 3-6, stormwater outfalls 
draining into the lake; 7. retention pond into which Lake Carroll drains.  Site 3 is 
downstream of a baffle box and site 4 is downstream of a continuous deflection 
stormwater system. 
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Figure 2.2 – Box plots showing FIB concentrations (fecal coliforms, E. coli and 
enterococci) (log10 CFU × 100 ml-1) in the water column at each site over the entire study 
period.  Diamonds reflect mean concentrations.  The bar (-) reflects the median 
concentration and box lengths reflect the upper and lower quartiles of the data set.  
Whisker lengths represent the maximum and minimum values, excluding outliers.  Sites 
1, 2, 6, and 7 were sampled 10 times.  Data for sites 3 and 4 include an additional 
sampling during a rain event (sampled 11 times).  Site 5 could not be sampled in October, 
but was also sampled during a rain event (sampled 10 times).  Horizontal lines reflect 
regulatory limits for fecal coliforms  (FC, 400 CFU × 100 ml-1) (56), and enterococci in 
freshwater (Ent, 61 CFU × 100 ml-1) (154).
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Figure 2.3 – A Bayes net prior probability model for Lake Carroll derived from observations at sites 1, 2 and 4 (where pathogens 
were measured). Each variable and arrow (arc) represents a node and its interaction with another variable.  Bin sizes (ranges) for all 
parameters were set such that data in the prior model was distributed evenly among the bins; units for FIB are CFU × 100 ml-1. 
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Figure 2.4 – A predictive Bayes net model for the relationship between physical parameters, FIB and pathogens at sites 1, 2 and 4. 
Fecal coliforms are the predictive variable. Bin sizes (ranges) for fecal coliforms were set such that data in the prior probability model 
were distributed evenly in each bin.  Fecal coliform concentrations were allocated to the smallest bin to determine the effect on 
pathogen detection and other variables; units for FIB are CFU × 100 ml-1. 
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Figure 2.5 – A predictive Bayes net model for the relationship between physical parameters, FIB and pathogens at sites 1, 2 and 4. 
Temperature and one-week cumulative antecedent rainfall are the predictive variables. Bin sizes (ranges) for predictive variables were 
set such that data in the prior probability model were distributed evenly in each bin; units for FIB are CFU × 100 ml-1.  Temperature 
and rainfall variables were allocated to the largest bins to determine the effect on pathogen detection and other variables.
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CHAPTER 3: DETECTION AND DIFFERENTIATION OF VIBRIO 

VULNIFICUS AND V. SINALOENSIS IN WATER AND OYSTERS OF A GULF 

OF MEXICO ESTUARY2 

Introduction 

 Shellfish, particularly oysters, are known to harbor high concentrations of Vibrio 

vulnificus, an autochthonous, gram-negative, opportunistic human pathogen (82, 140).  

The bacterium exhibits a high degree of genetic diversity and is divided into three 

biotypes (1, 2, and 3) based on genotypic as well as phenotypic differences.  All three 

biotypes have the ability to infect humans; however, biotype 1 is most frequently 

implicated in human infections (1, 14, 83).  V. vulnificus is the leading cause of deaths 

associated with the consumption of raw or undercooked shellfish; the mortality rate from 

cases resulting in septicemia is greater than 50%, and approximately 50 cases are 

reported each year in the United States (117).  To reduce the public health risk associated 

with shellfish consumption, shellfish beds are approved for retail shellfishing on the basis 

of microbial water quality determined by fecal coliform concentrations (78), although the 

allochthonous source of fecal indicator bacteria suggests that it would not be a good 

predictor for autochthonous Vibrio pathogens. 

 V. vulnificus concentrations in harvested from the U.S. Gulf of Mexico have been 

reported to be highest between May and October (e.g., median monthly concentration of 

2300 MPN × g-1 (110)), with a reduction to fewer than 10 MPN × g-1 from November to 

                                                 
2This chapter was co-authored by Eva Chase and Valerie J. Harwood (University of South Florida, Tampa, 
FL). 
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March (79, 82, 110).  Studies have consistently shown that culturable concentrations of 

V. vulnificus  are lower when water temperatures are cooler (110, 120, 123).  Water 

salinity is also an important factor affecting concentrations of the bacterium in oysters; 

the highest concentrations are typically detected when salinity is between 5 and 25 ‰ 

(110, 120, 123).  Under favorable temperature and salinity conditions, V. vulnificus 

concentrations have been reported to vary from > 105 CFU × g-1 to undetectable in 

individual oysters sampled from the same site (13).  Similarly, genetic diversity of V. 

vulnificus populations in individual oysters has been reported to be very high, with more 

than 100 strains present in a single oyster (25, 140). 

 V. vulnificus concentrations have, in some cases, been shown to correlate with 

fecal indicator bacteria (FIB) concentrations (76, 160).  In Danish waters, the occurrence 

of V. vulnificus was significantly correlated with concentrations of both total coliforms 

and enterococci (76).  Similarly, in Hawaii, V. vulnificus concentrations were correlated 

with E. coli and enterococci as well as Clostridium perfringens and F+ coliphage, which 

are also indicative of fecal contamination (160).  Furthermore, one study has suggested 

that poor water quality increases the relative abundance of type B (clinically-associated) 

V. vulnificus strains compared to type A (environmentally-associated) strains (60).  

Results of other studies have not found correlation of V. vulnificus with FIB 

concentrations (84, 120, 123, 145); however, many of these studies focused on areas 

permitted for shellfishing where water quality was good.  Fecal contamination of 

environmental waters results in increased nitrogen, phosphorous, and organic carbon 

concentrations, leading to the eutrophication of water bodies (126, 132) and positive 

effects on growth of certain bacteria (50, 165).  Furthermore, increased nutrient levels 
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may influence the virulence and growth of autochthonous pathogens including V. 

vulnificus (136, 168).  Therefore, in the present study, sites representing varying water 

quality were sampled to assess the relationship between FIB levels and V. vulnificus 

concentrations in water and oysters. 

Colistin-polymyxin B-cellobiose (CPC) agar (105), or a modification thereof 

(mCPC), has been frequently used for the isolation of V. vulnificus from environmental 

sources (118) and is recommended in the Food and Drug Administration’s (FDA) 

Bacteriological Analytical Manual for preliminary identification of the species, which 

forms round, flat, yellow colonies, 1 to 2 mm in diameter (152).  The FDA methodology 

includes an enrichment step in alkaline peptone water (APW) and plating on mCPC agar 

followed by molecular confirmation – typically by either PCR targeting the vvhA gene 

(hemolysin) (85, 152) or colony hybridization with an alkaline phosphatase-labeled probe 

targeting vvhA (172).  Direct plating (without enrichment) is more rapid and, when 

performed using V. vulnificus agar followed by confirmation using an alkaline 

phosphatase-labeled probe, shows less variability in concentration estimates between 

replicates than the FDA enrichment methodology (46).  CPC and mCPC are reportedly 

superior to media which differentiate among Vibrio species based on sucrose 

fermentation or alkaline sulfatase production, and up to 80% of colonies matching the V. 

vulnificus phenotype were confirmed by molecular methods in other studies (119, 143).  

These studies employed direct plating of shellfish samples without an enrichment step, 

suggesting that enrichment may not be necessary for recovery of culturable V. vulnificus 

using CPC. 
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 In the present study, water and oyster samples were collected from estuarine and 

marine (Gulf of Mexico) sites and from a tidally-influenced creek over a one-year period.  

We hypothesized that water and oysters sampled from a site with higher FIB levels would 

harbor greater concentrations of V. vulnificus compared to less impacted sites, therefore, 

we compared culturable concentrations of FIB (enterococci and fecal coliforms) (2, 156) 

with V. vulnificus concentrations determined via direct plating on mCPC agar (146), the 

FDA enrichment method (152), and qPCR (31).  We unexpectedly observed a high 

percentage of colonies from samples plated directly on mCPC agar which were 

phenotypically indistinguishable from V. vulnificus but which could not be confirmed by 

PCR for vvhA.  The identity and growth characteristics of these Vibrio spp. were 

explored by DNA sequencing and determination of growth rates under various nutrient 

and temperature regimes. 

Materials and Methods 

Sample Collection and Preparation.  Grab samples (2 L) of water and five individual 

oysters per sample event were collected from a tidally-influenced creek [Bull Frog Creek 

(BFC); 27°50’17”N, 82°22’55”W], an estuarine beach [Ben T. Davis (BTD); 

27°58’14”N, 82°34’44”W], and a marine beach [Fort DeSoto (FD); 27°38’42”N, 

82°43’5”W].  Both BFC and BTD sites are prohibited waters for shellfishing due to 

elevated fecal coliform levels, while FD was conditionally approved during the period of 

sampling (55).  Samples were collected every other month at BFC from July 2010 to July 

2011 (n = 10), at BTD from August 2010 to July 2011 (n = 9), and FD from February 

2011 to July 2011 (n = 6).  FD sampling was added in 2011 as a control (relatively 

pristine) site.  BFC was sampled on a separate, but consecutive day, from BTD and FD 
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due to the distance between sites and the need for prompt processing of the samples.  

Physicochemical parameters (temperature, pH, dissolved oxygen, turbidity, and salinity) 

were measured at each site on each date (Table 3.1).  Water samples were collected in 

sterile, 2 L bottles, and oysters were placed in plastic bags; samples were transported 

back to the lab in a cooler on ice and processed within six hours of sampling. 

Oysters were dissected aseptically and the total tissue mass (wet weight) from 

each of five individual oysters per sampling location on each sampling event was 

determined (mean 7.8 ± 4.9 g).  Individual oyster tissues were diluted 1:2 to 1:5 (wt/vol) 

in phosphate buffered saline (PBS; 0.14 M NaCl, 2.7 mM KCL, 0.5 mM Na2HPO4, and 

1.5 mM KH2PO4) and homogenized by blending at high speed for one minute in a 250 

ml-capacity Waring blender (Waring Products, Torrington, CT).  The extent of dilution 

was manipulated based on expected bacterial concentrations as well as to ensure that the 

volume was appropriate to allow for blending (> 10 ml).  In addition,  using the method 

described in the FDA’s Bacteriological Analytical Manual (152), composite oyster 

homogenates were created for each site for the final six sampling dates (Feb 2011 – July 

2011). The composites were made up of tissues from as many oysters as necessary to 

obtain 50 g were diluted 1:10 in PBS, serially diluted and enriched in alkaline peptone 

water (APW) at 37° C, overnight. 

Culture-Based Enumeration of Bacteria.  Fecal coliform and enterococci concentrations 

were determined via standard membrane filtration (47 mm nitrocellulose filters, 0.45 µm 

pore size) protocols (2, 156).  Water samples were filtered in duplicate at volumes of 1, 

10, and 100 ml.  One milliliter of individual oyster homogenate was filtered in duplicate 

for FIB, but greater volumes could not pass through the filter. 
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For the direct-plating assay (individual oysters), V. vulnificus was enumerated by 

diluting the initial homogenate obtained from an individual oyster (see above) 1:10 

(vol/vol) in PBS.  One hundred microliters of undiluted water samples and oyster 

homogenates and 100µl of 1:10 diluted oyster homogenates were spread-plated on mCPC 

agar plates (100 mm) in duplicate. All putative V. vulnificus colonies (those that formed 

round, flat, yellow colonies, 1 to 2 mm in diameter, according to the FDA description 

(152)) were subjected to PCR targeting the vvhA gene for confirmation (described 

below).  

For the FDA enrichment assay, water or oyster homogenates were serially diluted 

in PBS, and dilutions were inoculated into 10 ml APW for enrichment.  Enrichment 

cultures were streaked in triplicate onto mCPC agar, and one putative V. vulnificus 

colony from each streak was subjected to PCR confirmation.  Concentrations for both 

direct plating were reported as CFU × 100 ml-1 (water) or CFU × g-1 wet weight (oysters) 

and FDA enrichment methods were reported as MPN × 100ml-1 (water) or MPN × g-1 wet 

weight (oysters). 

Conventional PCR.  Conventional (presence/absence) PCR for V. vulnificus confirmation 

was performed on all isolates matching the FDA’s description for V. vulnificus on mCPC 

using previously described primers (Vv 1 and 3) targeting the vvhA gene (22) (Table 3.2). 

When none of the colonies (n = 168) from the samples collected at BTD and FD in June 

2011 were confirmed by PCR using Vv 1 and Vv 3 primers despite favorable temperature 

(28° C) and salinity (25 ‰) for isolation of culturable V. vulnificus, a subset (n = 7) of 

randomly selected environmental isolates from this sampling event were also tested for 

vvhA using two other primer sets also targeting vvhA (31, 85). The 16S rRNA gene of 
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several of these isolates, as well as one oyster isolate sampled from BTD in October 2010 

(Oy2-1), were sequenced (n = 8) (see below).   

A primer set specific to V. sinaloensis (Vs-2F and Vs-4R, Table 1) was developed 

based on the alignment of 16S rRNA sequences and tested against three strains of V. 

vulnificus (two biotype 1: ATCC 27562 and CMCP6, and one biotype 2: 33147) as well 

as 13 environmental samples, two of which were identified as V. brasiliensis, and 10 of 

which were identified as V. sinaloensis via 16S rRNA sequence analysis. 

All conventional PCR reactions consisted of 12.5 µl 2× GoTaq Green (Promega, 

Madison, WI), 0.4 µM of each primer (Integrated DNA Technologies, Coralville, IA), 

and nuclease-free water to bring the reaction to a total volume of 25 µl.  Template DNA 

for each reaction was obtained by picking an isolated colony from an mCPC agar plate 

with a sterile toothpick, and adding it directly to the assay tube.  For each set of PCR 

reactions, a no template negative control was performed, and DNA extracted from V. 

vulnificus 9067-96 (161) was used as a positive control.  PCR products were visualized 

via gel electrophoresis on a 2% agarose gel. 

DNA Extraction.  For qPCR analysis, samples were filtered through 47 mm nitrocellulose 

filters (0.45 µm pore size) at volumes of 500 ml for water and 1 ml for individual oyster 

homogenates at the original dilution (e.g. 1:2 in PBS).  Filters were placed in PowerBead 

tubes from the PowerSoil™ DNA kit (MoBio, Carlsbad, CA) and stored at -20° C until 

DNA was extracted (up to one week).  For each sampling event, a method blank (500 ml 

sterile buffered water (2)) was also filtered and subjected to DNA extraction.  DNA was 

extracted following the manufacturer’s instructions for the PowerSoil™ DNA kit with 

modifications that included proportional increases in buffers to allow for as much of the 
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supernatant as possible to be carried forward during the extraction (65).  For each set of 

samples extracted, an extraction blank consisting of an empty PowerBead tube (no filter 

added) subjected to all methodological steps was also included. 

To obtain DNA for sequencing and PCR controls, cultures were grown in 1.8 ml 

brain heart infusion broth supplemented to a final NaCl concentration of 1% (wt/vol) 

(BHI + 0.5% NaCl; Becton Dickson, Sparks, MD), and DNA was extracted  using the 

QIAamp DNA Stool Mini kit (Qiagen, Valencia, CA) following the manufacturer’s 

instructions.  DNA to construct a standard curve for enumeration of V. vulnificus by 

qPCR (described below) was prepared from a 5 ml culture of V. vulnificus CMCP6, and 

DNA was extracted using the QIAamp DNA Blood MIDI kit (Qiagen, Valencia, CA) 

following the manufacturer’s instructions. 

qPCR Analyses.  V. vulnificus concentrations were determined by qPCR by modifying a 

previously described method targeting the vvhA gene (31, 170) from a SYBR green 

format to a BYRT green format (170). Each reaction consisted of 12.5 µl 2X GoTaq 

qPCR Master Mix (Promega, Madison, WI), 0.4 µM of each primer (Integrated DNA 

Technologies, Coralville, IA), and nuclease-free water to bring the volume to 20 µl.  The 

SYBR green assay has been previously shown to retain 100% sensitivity and specificity 

for V. vulnificus, and the limit of detection was observed at a comparable cycle threshold 

between the TaqMan and SYBR green assays (170). We also found that results obtained 

using the BYRT green chemistry were comparable to the SYBR green assay (data not 

shown).  Five microliters of sample (see “DNA extraction”, above) or standard DNA was 

added as template to each reaction. Cycling conditions were as previously published 

(170). All samples were run in duplicate, and duplicate no-template controls were 
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performed with each run.  Standard curves were included with each run and were 

generated using genomic DNA extracted from V. vulnificus CMCP6 diluted to an 

estimated number of gene copies ranging from 101 to 106 (10-fold dilutions) determined 

as the product of the DNA concentration multiplied by Avogadro’s number and divided 

by mass of the genome (178).  The mean r2 values for the vvhA standard curve was 0.994 

± 0.006, and mean efficiency was 97.6 ± 3.9 %, respectively.  All qPCR reactions were 

performed using 96-well plates and all reactions were run using the Applied Biosystems 

7500 Real-Time PCR System (Carlsbad, CA).  The melting temperature for each 

amplicon was evaluated to determine specificity; only amplicons with a melting 

temperature of 83.7 ± 0.2° C were considered to represent specific amplification of vvhA.  

This value was a determined from the mean and standard deviation of the melting 

temperature from standard curve. 

Sequence Analysis.  The 16S rRNA genes of eighteen colonies that were phenotypically 

indistinguishable from V. vulnificus were sequenced (GenBank accession numbers 

JN871695 - JN871710, JQ796768, and JQ796769).  These colonies were selected 

randomly from typical colonies isolated from BTD and FD (where V. vulnificus was 

rarely PCR-confirmed) in October 2010 as well as April and June 2011from both water 

and oysters.  In addition, for phylogenetic comparison, the biotype 2 strain ATCC 33147 

was also subjected to 16S rRNA sequence analysis (accession number JQ253967), and 

this sequence is among the first published in GenBank for a known biotype 2 strain.    

Amplicons (approximately 1480 bp) were produced using the Eco8F-1492RC universal 

bacterial primer set (90) via conventional PCR (described above) and purified using the 

QIAquick PCR Purification kit (Qiagen Inc., Valencia, CA) according to the 
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manufacturer’s instructions.  Duplicate single-extension sequencing reactions were 

performed by Macrogen Corp., USA (Rockville, MD).  Contigs for isolates sequenced 

were assembled using DNA Baser software (HeracleBiosoft, Pitesti, Romania).  

Sequences for V. vulnificus CMCP6 and V. parahaemolyticus RIMD 2210633 were 

obtained from GenBank (accession numbers NC_004459 and NC_004603, respectively).  

Sequence alignment, bootstrap analysis, and  maximum likelihood tree generation were 

performed using MEGA 5.0 software (147). 

Growth Comparison Studies.  The growth rates of three V. vulnificus strains, including 

two biotype 1 strains (CMCP6 and an environmental isolate designated BFC W1, isolated 

from water at Bull Frog Creek) and a biotype 2 strain (ATCC 33147), were compared 

with three confirmed  (16S rRNA sequencing) V. sinaloensis strains isolated from oysters 

(designated Oy1-3, Oy2-1, and Oy3-51).  Designations refer to the oyster and isolate 

number for each strain (e.g. Oy1-3 is the third isolate from the first oyster homogenized).  

Oy1-3 and Oy 3-51 were isolated from the July 2011 sampling at BFC and confirmed 

����������������������������������������������

nd Vs-4R) while Oy 2-1 was isolated from BTD during October 2010 and was confirmed 

via 16S rRNA sequence analysis. Strains were grown overnight in BHI + 0.5% NaCl at room temperature.  

Overnight cultures were diluted 1:20 (15 ml total volume) in sterile seawater, APW, or 

BHI + 0.5% NaCl. Triplicate cultures for each condition were grown at 25°, 30°, and 37° 

C with agitation (140 rpm).  Growth rate (µ) was determined based on the change in 

absorbance at OD600, measured using the Nanodrop 2000 spectrophotometer (Fisher 

Scientific, Waltham, MA).  OD600 values were related to culturable concentrations via  
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plating in triplicate at three time points during the exponential growth phase on Difco™ 

typtic soy agar (TSA) (Becton Dickson, Sparks, MD). 

Statistical Analyses.  To achieve normally distributed data sets, all bacterial 

concentrations were log10 transformed.  Due to frequent non-detects of V. vulnificus by 

both culture and qPCR methods, one-half the limit of detection was substituted for all 

non-detect values for all analyses (66, 71).  All statistical analyses were evaluated at α = 

0.05.  Bacterial concentrations among sampling sites and specific growth rate (µ) for the 

various strains were compared via one-way analysis of variance (ANOVA) with Tukey’s 

post-hoc test using GraphPad Instat software, version 3.0 (San Diego, CA).  The 

frequency of detection of V. vulnificus among sampling sites was compared using a Chi-

square test for independence (GraphPad Instat).  Spearman correlations were calculated 

to determine relationships between bacterial concentrations and physicochemical 

parameters using PASW software, version 17 (SPSS, Chicago, IL). 

Results 

V. vulnificus Detection and Enumeration.  The frequency of detection of V. vulnificus 

(confirmed by vvhA amplification) varied among the methods of enumeration (direct 

plating, enrichment, and qPCR) as well as by site (Table 3.3).  Detection of V. vulnificus 

in water or individual oyster samples (n = 150) was observed in only 19% of samples by 

direct plating and in 29% by qPCR.   The enrichment method, which was used during the 

final six months of sampling, detected V. vulnificus significantly more frequently than the 

other methods (in 97% of 36 samples; P ≤ 0.0002).  Concentrations of V. vulnificus in 

oyster samples determined by each method of enumeration among all three sites were not 

significantly different (P = 0.18 to 0.73).  There was also no significant difference in V. 
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vulnificus concentrations in the water column among sites determined by direct plating or 

enrichment methods (P = 0.08 and 0.44, respectively); however significantly higher V. 

vulnificus concentrations were found at BFC compared to either BTD or FD via qPCR 

enumeration (P = 0.0007).  V. vulnificus detection by direct plating and qPCR in water 

and oysters was also significantly higher at BFC than at other sites (P = 0.0003).  

Detection in the water at BFC by direct plating occurred during many of the warmer 

months (April through July, Figure 3.1). Few clear temporal trends in V. vulnificus 

detection emerged, with the exception that detection was infrequent at all sites in 

October, December and February.    The recommended fecal coliform standard for 

shellfishing (43 CFU × 100 ml-1) (78) was exceeded at all sites from which V. vulnificus 

was detected by direct plating. 

  Among all water and oyster samples (combined), V. vulnificus concentrations 

determined by direct plating were correlated with concentrations determined by the FDA 

enrichment and qPCR methods (r = 0.417, P = 0.011 and r = 0.471, P < 0.0001, 

respectively).  At BFC, where detection was relatively frequent, this relationship was 

maintained among samples from both matrices, combined (r = 0.326, P = 0.011).  Among 

all samples collected, no correlations were observed between FIB concentrations and V. 

vulnificus enumerated by any of the three methods.  However culturable V. vulnificus 

concentrations (by direct plating among all samples) were negatively correlated with 

salinity (r = -0.367, P < 0.0001) and positively correlated with turbidity (r = 0.289, P < 

0.0001); whereas, concentrations determined by qPCR were negatively correlated with 

salinity (r = -0.192, P = 0.018) and positively correlated with temperature (r = 0.281, P < 

0.0001). 
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Identification of V. sinaloensis.  Despite a high number of colonies with the characteristic 

V. vulnificus phenotype on mCPC agar, a low proportion (≤ 3% ) were confirmed by 

amplification of vvhA from BTD and FD samples over the entire study period (Table 3.4).  

The unconfirmed isolates produced either no amplicon or amplicons of the wrong size 

(Table 3.2, Figure 3.2), indicating that other bacteria may mimic the V. vulnificus 

phenotype on mCPC agar.  To investigate this possibility, eighteen isolates that were 

phenotypically indistinguishable from V. vulnificus but unconfirmed by vvhA PCR were 

subjected to 16S rRNA sequence analysis.  Most isolates (75%) were identified as V. 

sinaloensis; however, other isolates that also resembled V. vulnificus on mCPC were 

identified as V. brasiliensis (12.5%), V. coralliilyticus (6.25%), and V. harveyii (6.25%).  

Comparison of 16S rRNA sequences of these environmental isolates with those of two V. 

vulnificus, biotype 1 strain CMCP6 and biotype 2 strain 33147, and V. parahaemolyticus 

RIMD 2210633 revealed that all isolates identified as V. sinaloensis were 99% identical 

to each other, between 97.2 to 96.2% identical to V. vulnificus, and 96.8 to 95.8% 

identical to V. parahaemolyticus (Figure 3.3).  The V. sinaloensis group was most closely 

related (98.3% to 99% identical) to V. coralliitycus as well as V. brasiliensis (97.7 to 

98.3% identical). 

Some V. sinaloensis isolates produced an amplicon which was approximately 75 

bp smaller than that typical of V. vulnificus when subjected to species-confirmation PCR 

using Vv 1 & 3 (Table 3.2, Figure 3.2) (22).  Isolates that produced this smaller amplicon 

accounted for approximately 11% and 3% of putative colonies at BTD and FD.  A second 

PCR method for vvhA that is recommended by the FDA  and utilizes primers Vvh 785F 

and 1303R (152) was also applied to V. sinaloensis isolates, yielding an amplicon 
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approximately 200 bp larger than that expected for V. vulnificus (Figure 3.2).  No strain 

that was tested with both primer sets (n = 7) produced an amplicon from both PCR 

assays.  The primer set used for qPCR (31) produced an amplicon of approximately the 

same size as V. vulnificus with the same seven V. sinaloensis strains.  To further verify 

amplification of V. sinaloensis strains using the qPCR primer set, duplicate qPCR 

reactions were performed using DNA extracted from the three V. sinaloensis strains used 

for growth comparison.  All strains showed amplification at late CT values (> 35).  

Melting temperatures for two strains were outside the range accepted for positive results 

(83.7 ± 0.2° C) with means of 82.1 ± 0.1° C and 82.0 ± 0.0° C for strains Oy 1-3 and Oy 

2-1, respectively; however, amplicons from the third strain, Oy 3-51, would have been 

considered positive (mean melting temperature 83.8 ± 0.3° C).  DNA from the biotype 2 

strain (ATCC 33147) was similarly tested and amplicons had a mean melting temperature 

of 83.7 ± 0.1° C, as expected for V. vulnificus. 

A V. sinaloensis-specific primer set was also developed (Table 3.2) and tested 

against ten randomly-selected isolates that were confirmed as V. sinaloensis via 16S 

rRNA sequencing and were collected in June and July 2011.  All V. sinaloensis isolates, 

but none of the non-target Vibrio spp.,  including three V. vulnificus strains (ATCC 

27562, CMCP6, and 33147) and two environmental isolates identified as V. brasiliensis 

via 16S rRNA sequencing, amplified with the V. sinaloensis-specific primer set. 

Fecal Indicator Bacteria.  FIB concentrations in the water column at each site are shown 

in Figure 3.4.  The fecal coliform regulatory limit for a one-time grab sample for 

shellfishing waters (43 CFU × 100 ml-1) (78) was exceeded in water samples at every 

sampling event at BFC, at 56% of sampling events at BTD, and during no sampling event 
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at FD.  Culturable concentrations of fecal coliforms and enterococci were significantly 

higher in BFC water samples compared to BTD or FD (P < 0.0001 for both FIB), and no 

significant difference was observed between FIB concentrations at BTD and FD.  Among 

oyster samples, those collected from BFC harbored higher concentrations of fecal 

coliforms than those collected from BTD or FD (means of 1.4, 0.8, and 0.8 log10 CFU × 

g-1, respectively; P = 0.0021).  Differences in enterococci concentrations from oysters 

were not significantly different among sites (P = 0.2596). 

Growth Characteristics of V. vulnificus vs. V. sinaloensis.  To test the hypothesis that V. 

sinaloensis and V. vulnificus may out-compete one another under conditions relevant to 

environmental conditions or enrichment culture, their growth rates (µ) were compared in 

APW (10 ‰ NaCl), BHI + 0.5% NaCl broth (10 ‰ NaCl), and seawater (35 ‰ NaCl) in 

vitro (Figure 3.5).  In seawater at 25° C, all strains of V. sinaloensis and the biotype 2 V. 

vulnificus (eel pathogen) had significantly higher mean µ than the other V. vulnificus 

strains (µ > 0.15, P < 0.0001).  Increased temperature in seawater resulted in more rapid 

growth of V. vulnificus strains, which diminished the strength of this relationship. At 30° 

C only two V. sinaloensis strains showed significantly greater µ than V. vulnificus, and µ 

at 37° C was not significantly different between the species.  Conversely, in APW at all 

temperatures, the environmental V. vulnificus strain as well as the biotype 1 strain had 

significantly higher mean µ (> 0.45) than any strain of V. sinaloensis or the biotype 2 V. 

vulnificus (P < 0.0001).  Interestingly, under nearly all conditions, µ of the biotype 2 V. 

vulnificus strain was more similar to V. sinaloensis strains than to other V. vulnificus 

strains.  The most rapid growth for both species was observed in BHI + 0.5% NaCl. 
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Discussion 

 The hypothesis underpinning this study was that V. vulnificus concentrations in 

estuarine waters and oysters samples would co-vary with levels of FIB, and would be 

significantly different among sites known to be impacted to varying degrees by 

anthropogenic activities and fecal pollution. As expected, FIB concentrations were 

significantly greater in BFC waters and oysters than at BTD or FD.  The frequency of V. 

vulnificus detection by direct plating and qPCR was also greatest at BFC, as was V. 

vulnificus concentration in the water column determined by qPCR.  At least two factors 

could be contributing to the differences in V. vulnificus concentrations: (1) waters 

affected by fecal contamination may support higher densities of V. vulnificus due to 

greater availability of nitrogen, phosphate, and organic carbon as a result of fecal 

contamination (126, 132) and/or (2) lower salinity at BFC supported higher 

concentrations of V. vulnificus (110, 120, 123). 

An unexpected finding was the failure to isolate V. vulnificus from water and 

oysters at favorable salinity and temperature levels, although colonies mimicking the 

correct phenotype on mCPC agar were plentiful. No similar phenomenon had been noted 

in our previous studies in the Tampa Bay estuary (60). Others have reported effective 

isolation of V. vulnificus from water and oysters on mCPC agar without enrichment 

(164), although at least one study found low detection frequency by PCR using oyster 

homogenates as template without enrichment (121).  A novel Vibrio sp., V. sinaloensis, 

was identified from isolates on mCPC agar in many samples, and may be a major 

component of the Vibrio community in Tampa Bay.  The presence of V. sinaloensis and 

other vibrios that mimic the V. vulnificus phenotype on mCPC agar impaired the ability 
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of direct plating methodology to assess V. vulnificus concentrations.  V. vulnificus was 

detected most frequently at BFC, the most polluted and least saline site.  The FDA 

enrichment method yielded greater recovery of V. vulnificus than direct plating or qPCR, 

potentially due to stress on V. vulnificus resulting from high salinity at BTD and FD 

which inhibited growth on mCPC without enrichment.  Differences in detection 

frequency by method may also be a result of method limits of detection (4.5 CFU × 100 

ml-1, 4.5 × 10-2 cells × 100 ml-1, and 9.1 target copies × 100 ml-1, for the direct-plating, 

FDA enrichment, and qPCR methods, respectively), with the lowest detection limit for 

the enrichment method. 

 V. sinaloensis strains did exhibit faster growth than V. vulnificus biotype 1 and 

environmentally-isolated strains in seawater at temperatures ≤ 30° C, suggesting that V. 

sinaloensis may be able to out-compete V. vulnificus and represents a higher relative 

proportion of vibrios in the environment than V. vulnificus under certain conditions. 

Alternatively, mCPC may have been inhibitory to V. vulnificus, but not V. sinaloensis, 

under the particular environmental conditions in which very few V. vulnificus were 

detected (i.e. high salinity).  The specific growth rate of the biotype 2 V. vulnificus strain 

was generally more similar to that of V. sinaloensis strains compared to biotype 1 V. 

vulnificus.  Differences in growth characteristics among V. vulnificus biotypes that are 

influenced by temperature, pH, and salinity have been previously noted (34). The growth 

rate of biotype 1 V. vulnificus strains was significantly greater in APW enrichment 

medium compared to all other types and species, and this may explain why this species 

(or specifically biotype 1) could be detected using this methodology but not by direct 

plating. This finding suggests the possibility that biotype 2 strains could be abundant in 
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U.S. Gulf of Mexico waters and oysters, but are outcompeted by biotype 1 strains in 

enrichment media and are therefore not detected.   

Of note, V. sinaloensis as well as unidentified environmental isolates which were 

phenotypically indistinguishable from V. vulnificus produced atypical amplicons when 

assayed with both conventional PCR primer sets targeting the vvhA gene.  Furthermore, 

amplicons with similar melting temperatures to V. vulnificus amplicons were produced 

via the qPCR assay.  As a result, the qPCR concentrations reported in this study may be 

overestimates due to amplification of V. sinaloensis as well as V. vulnificus DNA.  While 

this possibility was not noticed until completion of sampling, the results suggest that 

qPCR-based methods relying on the vvhA gene target may be over-estimating V. 

vulnificus concentrations in environmental samples, unless a further confirmatory step is 

performed.  This caveat has important implications for the development of new, rapid 

tools to enumerate V. vulnificus. 

This study is among the first to identify V. sinaloensis in water and oysters, and 

the ecology, geographic distribution, and virulence potential of this species remains 

unknown.  Previously, this species has only been reported to have been isolated from the 

liver and kidney of cultured rose snapper on the western coast of Mexico (59).  The 

ecological and public health implications of the presence of V. sinaloensis in Tampa Bay 

waters and oysters require further study; however, the ability of this species to mimic the 

V. vulnificus phenotype as well as cross-reactivity of vvhA primers with this species 

highlights a need for careful molecular confirmation when enumerating V. vulnificus.  

Furthermore, developing rapid methods for V. vulnificus enumeration should be carefully 

validated to ensure assay specificity.   
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Table 3.1 – Mean values and standard deviations of physicochemical parameters at each sampling site.  Values in parentheses show 
the range for each parameter. 

Site (n) Temperature (°C) Salinity (ppt) 
Dissolved Oxygen 

(mg × L-1) 
pH Turbidity (NTU) 

BFC (10) 
22.5 ± 5.7 

(10.0 – 28.1) 

9.1 ± 8.6 

(0.3 – 25.0) 

8.9 ± 5.4 

(3.2 – 22.6) 

7.8 ± 0.3 

(7.4 – 8.6) 

24.5 ± 48.2 

(4.3 – 160.0) 

BTD (9) 
23.0 ± 5.9 

(10.2 – 29.0) 

25.2 ± 2.5 

(20.0 – 30.0) 

9.6 ± 5.1 

(4.3 – 12.9) 

8.2 ± 0.3 

(7.8 – 8.7) 

21.3 ± 45.5 

(2.2 – 142.0) 

FD (6) 
24.0 ± 4.0 

(18.1 – 28.4) 

34.3 ± 1.8 

(32.0 – 37.0) 

8.2 ± 3.5 

(3.7 – 13.9) 

8.2 ± 0.2 

(7.8 – 8.6) 

2.7 ± 1.1 

(1.5 – 4.4) 
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Table 3.2 - Primers used in this study and amplicon sizes observed. 
Target Gene Primer Sequence (5’ – 3’) Expected Amplicon 

Size (bp)a 
Atypical Amplicon 

Size (bp)b 
Reference 

vvhA Vv 1 CGCCGCTCACTGGGGCAGTGGCTG 
387 312 (22) 

Vv 3 CCAGCCGTTAACCGAACCACCCGC 
vvhA Vvh-785F CCGCGGTACAGGTTGGCGCA 

519 732 (152) 
Vvh-1303R CGCCACCCACTTTCGGGCC 

vvhA vvhA-qPCR-F TGTTTATGGTGAGAACGGTGCA 
99 NDc (31) 

vvhA-qPCR-R TTCTTTATCTAGGCCCCAAACTTG 
16S rRNA 
(generic) 

Eco-8F AGAGTTTGATCMTGGCTCAG 
1484 ND (90) 

1492RC GGTTACCTTGTTACGACTT 
16S rRNA 
(V. sinaloensis) 

Vs-2F CACTCGTATCTCTACAAGCTTCTGAG 
618 ND This study 

Vs-4R AGAAGGCCTTCGGGTTGTAAAG 
aAnticipated amplicon sizes for vvhA targets were determined in silico based on the GenBank sequence for V. vulnificus CMCP6 and 
Enterococcus faecalis 62 (accession number CP0024291).  Amplicon size for the V. sinaleonsis-specific primer set was determined 
based on an alignment of 16S rRNA sequences. 
bApproximate amplicon size observed from colonies with the V. vulnificus phenotype not confirmed as V. vulnificus by PCR. 
cNo difference in amplicon size was observed for V. vulnificus vs. other environmental isolates mimicking the V. vulnificus phenotype.
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Table 3.3 - Detection frequency and mean concentration of confirmed V. vulnificus in water and oysters at each site as 
estimated by the direct-plating, enrichment, and qPCR methods. Mean values ± standard deviation are shown. 

  mCPC-PCR (Direct Plating) Enrichment-mCPC-PCR qPCR 

Matrix 

Site 
(number 
of sample 

events) 

Proportion 
of Samples 
Positive for 
V. vulnificus 

(n))  

Mean 
Concentrationa 

Proportion 
of  Samples 
Positive for 
V. vulnificus 

(n) 

Mean 
Concentrationb

Proportion 
of Samples 
Positive for 
V. vulnificus 

(n) 

Mean 
Concentrationc 

Water 

BFC (10) 0.50 (10) 1.80 ± 1.37 1.00 (6) 1.85 ± 1.00 0.90 (10) 3.27 ± 1.31 
BTD (9) 0.22 (9) 1.05 ± 1.08 1.00 (6) 1.75 ± 1.23 0.67 (9) 1.57 ± 0.85 

FD (6) 0.00 (6) NDe 0.83 (6) 1.37 ± 0.88 0.33 (6) 1.19 ± 0.54 

Oystersd 
BFC (10) 0.34 (50) 1.36 ± 0.54 1.00 (6) 2.27 ± 0.51 30 2.31 ± 0.39 
BTD (9) 0.11 (45) 1.22 ± 0.43 1.00 (6) 2.48 ± 0.84 18 2.27 ± 0.47 
FD (6) 0.00 (30) NDe 1.00 (6) 2.01 ± 0.63 10 2.18 ± 0.26 

aUnits are log10 CFU × 100 ml-1 for water and log10 CFU × g-1 for oyster samples. For samples with undetectable concentrations, one 
half the limit of detection was used for the calculation. 
bFDA enrichment methodology (APW followed by mCPC and PCR confirmation) was used at all sites from Feb to July 2011 and 
concentrations are given as MPN × 100ml-1 for water and MPN × g-1 for oysters.  Oyster concentrations represent composite 
homogenates rather than individual oysters.  For samples with undetectable concentrations, one half the limit of detection was used for 
the calculation. 
cUnits are log10 target copies × 100 ml-1 for water and target copies × g-1 for oyster samples. For samples with undetectable 
concentrations, one half the limit of detection was used for the calculation. 
dEach individual oyster represents a single sample for direct plating and qPCR methodologies.  Composite oyster samples were used 
for enrichment.  
eV. vulnificus was not detected in these samples; one-half the limit of detection was used for statistical analyses (0.51 for water and 
1.00 for oysters).
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Table 3.4 - Percentage of putative (cellobiose-fermenting) colonies isolated by direct plating that were identified as V. 
vulnificus by PCR of vvhA. 

Site Matrix Number Coloniesa V. vulnificusb 

BFC 

Total 292 45.9% 

Water 36 41.7% 

Oysters 256 46.5% 

BTD 

Total 1827 2.8% 

Water 64 6.2% 

Oysters 1763 2.7% 

FD 

Total 368 0 

Water 37 0 

Oysters 331 0 

aNumber of colonies matching the phenotypic description of V. vulnificus on mCPC agar (all were subjected to PCR confirmation). 
bPercentage of isolates confirmed to be V. vulnificus by PCR using Vv primers 1&3 
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Figure 3.1 - Mean concentrations of confirmed V. vulnificus determined by direct plating of water (one sample per site) and 
oyster samples (samples from five oysters per site) on each date.  Fecal coliform concentrations from the water column at BFC 
(◊) and BTD (□) are also shown.  BTD was not sampled in July 2010.  The absence of a value for a site on any given dated 
indicates that V. vulnificus was not detected; FD is not shown in the graph as V. vulnificus was not isolated from that site by 
direct plating during this study. 



www.manaraa.com

 

69 
 

 

 

Figure 3.2 - Results of two PCR assays for the vvhA gene for V. vulnificus and V. 
sinaloensis strains.  Lane 1: Molecular weight ladder (100 to 1500 bp) (M).  
Reactions in lanes 2-4 used Vv 1 & 3 primers while those in lanes 5-7 used Vvh-
785F and Vvh-1303R (FDA-recommended primer set).  Lanes 2 and 5: negative 
(no template) controls; lane 3: V. sinaloensis isolate Oy 3-3; lanes 4 and 7: V. 
vulnificus 9067-96; lane 6 is V. sinaloensis isolate Oy 2-1.

  1   2   3   4   5   6   7 

M  N Vs Vv N Vs Vv 
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Figure 3.3 - Maximum likelihood tree of partial 16S rRNA sequences (1230 bp) of environmental isolates obtained in this 
study and reference Vibrio spp. (retrieved from GenBank).  Isolates designed “Oy” were isolated from oysters while those 
designated “W” were isolated from water.  Bootstrap values were calculated at 500 iterations.
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 Oy1-1 V. sinaloensis-FD Apr2011
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 Oy2-9 V. sinaloensis-BTD Oct2010

 Oy2-1 V. sinaloensis-BTD Oct2010
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Figure 3.4 - Box and whisker plot of fecal indicator bacteria concentrations (log10 CFU × 
100ml-1) in the water column.  Inner boxes represent mean concentrations throughout the 
study period, and box lengths reflect upper and lower quartiles.  Whiskers represent one 
standard deviation from the mean.  Outliers were within two standard deviations from the 
mean while extremes are greater than two standard deviations.

 Fecal coliforms
 Outliers
 Extremes
 Enterococci 
 Outl iers
 Extremes

BFC BTD FD

Site

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

L
og

10
 C

F
U

/1
00

m
l



www.manaraa.com

 

72 
 

 

Figure 3.5 - Mean growth rates (µ) of V. sinaloensis and V. vulnificus.  All V. sinaloensis strains as well as V. vulnificus BFC 
W1 were isolated from environmental samples.  V. vulnificus CMCP6 and 33147 were obtained from laboratory stocks and 
represent biotypes 1 and 2, respectively. µ was assessed in triplicate for each species.  Error bars reflect standard deviations.  
For each condition, asterisks indicate strains which showed significantly higher growth within a particular set of conditions.
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CHAPTER 4: DIFFERENTIAL EXPRESSION OF A SODIUM-

PHOSPHATE COTRANSPORTER AMONG VIBRIO 

VULNIFICUS STRAINS3 

Introduction 

 Vibrio vulnificus is a gram-negative bacterium with a high degree of genetic 

diversity (25).  The species is autochthonous to estuarine and marine waters and is 

frequently found in shellfish, particularly oysters (171).  V. vulnificus strains can be 

grouped into three biotypes based on differences in genotype and phenotypic 

characteristics (14, 15, 150).  All three biotypes are opportunistic pathogens of humans 

(1, 14, 75); however, biotype 1 is the predominant human pathogen, and biotype 2 is 

primarily associated with infection in eels (150).  Infection with biotype 1 strains can 

cause gastroenteritis, septicemia, and wound infections (74), while biotype 3 infections 

are associated with wound infections in humans following handling of Tilapia (14). All 

strains, regardless of virulence potential, are environmentally-derived, but differences in 

virulence potential toward humans have resulted in efforts to identify more highly 

virulent strains (79). 

Among biotype 1 strains, specifically, methods exploiting heterogeneity in a 

virulence correlated gene (vcg) have been developed to distinguish between strains 

common to the environment which are generally not implicated in or isolated from 

human infections (type E, environmental) vs. those which are believed to be more highly 

                                                 
3 This chapter has been submitted to Applied and Environmental Microbiology.  Co‐authors include 
Valerie J. Harwood (University of South Florida, Tampa, FL). 



www.manaraa.com

 

74 
 

virulent and have been isolated from clinical cases (designated type C for clinical) (128).  

This strain distinction is closely aligned with other typing strategies based on 

heterogeneity of the 16S rRNA gene or multilocus sequence typing to distinguish 

potentially less virulent strains  (vcg type E, 16S type A or AB, lineage II) from those 

suspected to be more highly virulent (vcg type C, 16S type B, lineage II) types (39).  

While these typing strategies are well correlated with each other as well as strain isolation 

source, the relationship between strain type and virulence remains imperfect. 

A previous study assessing diversity among biotype 1 strains via BOX-PCR 

revealed that most type C strains produced a unique DNA fragment compared to type E 

strains (138).  The nucleotide sequence of this DNA fragment corresponded to a portion 

of a gene encoding a conserved hypothetical protein (hypB; VV1_0515 in V. vulnificus 

CMCP6, accession number NP_759506) that was only amplified in type C strains, as 

assessed by a conventional PCR assay targeting hypB (138).  The gene is located 

immediately downstream of the nptA gene encoding a sodium-dependent phosphate 

transporter (VV1_0514 in V. vulnificus CMCP6, accession number NP_759505), and 

both genes were expected to be transcribed as an operon.  Amplification of the putative 

nptA-hypB operon was observed from genomic DNA of all strain types; however, 

transcription of the putative operon via conventional reverse transcriptase PCR (RT-PCR) 

was only observed in type C strains (139).  Based on these studies, the putative operon 

was hypothesized to play a role in strain virulence.  Several previously described methods 

for gene knockout mutation in vibrios (63, 176) were unsuccessful at knocking out the 

nptA gene in the biotype 1, type C strain CMCP6, suggesting its function may be 

essential for survival. 
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The function of NptA has not been widely studied in prokaryotes outside of V. 

cholerae (167).  One such study conducted by Lebens, et al. (92) found the protein to be 

homologous to type II sodium-phosphate cotransporters in animals, which facilitate Pi 

uptake in intestinal and renal cells (73, 111).  This group assessed the potential of this 

protein to act as a high-affinity Pi uptake system in V. cholerae (92); however, increased 

Pi uptake during phosphate starvation could not be attributed to this gene based on 

expression of a reporter gene under control of the nptA promoter.  Interestingly, activity 

of the V. cholerae protein did show pH-dependence similar to the animal enzyme (only 

50% activity at pH 6.5 vs. pH 9.0), although, the prokaryotic enzyme lacked the REK 

motif, which affects pH-dependent alterations in activity in animals (44, 92).  The authors 

suggested based on these findings that NptA in V. cholerae may act in response to 

changes in pH, energy, and phosphate availability as the bacterium moves from water to 

the host environment.  Furthermore, they suggested that the protein functions as a low-

affinity, high-capacity Pi uptake system in V. cholerae which allows rapid growth in 

nutrient-rich environments (e.g. in an animal host); however, the factors affecting 

regulation of this gene have yet to be determined (92). The nptA gene has also been found 

in a variety of other Vibrio spp. whose genomes have been sequenced, including V. 

alginolyticus, V. cambellii, V. brasiliensis, V. parahaemolyticus, and V. sinaloensis, as 

well as other human pathogens such as Aeromonas hydrophila, Bacillus anthracis, 

Clostridium botulinum, and C. difficile (104). 

The nptA gene in V. vulnificus has a nucleotide sequence that is 75% identical to 

that of V. cholerae, and the protein shares 86% amino acid similarity.  We hypothesized 

that pH, salinity, and/or phosphate concentration may affect transcription levels of this 
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gene, and that transcript abundance would be elevated under more nutrient-rich 

conditions (e.g. higher phosphate concentration).  Furthermore, based on differences in 

gene expression among strains observed using the RT-PCR assay (139), we hypothesized 

that relative transcript abundance would vary among strains of differing vcg types or 

biotypes.  To test these hypotheses, concentrations of nptA transcripts were assessed by 

quantitative reverse-transcriptase PCR (qRT-PCR) using strains representing each 

biotype, and biotype 1 genotypes C and E, in chemically-defined media of varying 

salinity, phosphate, and pH.  In addition, genomic analysis of the nptA gene from each 

strain was performed to determine if differences in nucleotide or amino acid sequence 

reflect potential differences in transcript abundance among strain types. 

Materials and Methods 

Bacterial Culture Conditions.  V. vulnificus strains included ATCC 27562 (biotype 1, 

type E), CMCP6 (biotype 1, type C), 9067-96 (biotype 1, type C) (161), ATCC 33147 

(biotype 2) , and 302/99 (biotype 3) (34).  For clarity, strains will be referred to 

throughout as 27562(E), CMCP6(C), 9067-96(C), 33147(2), and 302/99(3), where 

parenthetic designations specify genotype (C or E for biotype 1) or biotype (2 or 3).  

Strains were maintained on Difco™ marine agar (Becton Dickson, Sparks, MD).  For 

growth and gene expression studies, cultures were incubated at room temperature (25°C) 

overnight in 5 ml of BBL™ brain heart infusion (Becton Dickson, Sparks, MD) broth 

supplemented with 0.5% (wt/vol) NaCl (BHI + 0.5% NaCl).  Overnight cultures were 

streaked onto marine agar to verify pure cultures and for maintenance.  Overnight growth 

in copiotrophic BHI + 0.5% NaCl was performed to yield a substantial inoculum in 

experimental media the following day such that growth to mid-exponential phase would 
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be observed in < 4 hrs, allowing for RNA extraction and treatment on the same day (see 

below).  While this methodology likely resulted in a carry-over of some nutrients from 

the overnight culture, the effect of this carry-over is expected to have been minimal based 

on the extent of dilution (below).  Growth rate and gene expression data observed are 

presumed to result from experimental conditions since carry-over was kept constant in all 

trials. Overnight cultures were diluted in duplicate 1:20 (v/v) in 20 ml of  defined media 

modified from (116) [50mM Tris, 10mM NH4Cl, 0.1mM CaCl2, 1mM MgSO4, 0.1mM 

FeCl2, 0.2% (wt/vol) Bacto™ yeast extract (Becton Dickson, Sparks, MD), 0.2% (wt/vol) 

Bacto™ casamino acids (Becton Dickson, Sparks, MD), and 0.2% (wt/vol) glucose 

(1.1mM)].  The base salinity of the experimental medium was 10‰, which was adjusted 

to 30‰ with NaCl.  Phosphate concentration was adjusted by addition of KH2PO4 at 

concentrations of 5µM or 1mM.  pH of the medium was adjusted to 6.0, 7.0, or 8.0, and 

the medium was filter-sterilized through a 0.45µM pore-sized nitrocellulose filter 

(Fischer Scientific, Waltham, MA). 

In addition to experimental media, growth and nptA expression were also assessed 

in cultures grown in BHI + 0.5% NaCl and 0.2µM filter-sterilized seawater (35‰, pH 

8.0) for comparison of copiotrophic vs. oligotrophic conditions.  All cultures were grown 

in duplicate   at 37°C with agitation at 155 rpm.  Growth was measured using the 

Nanodrop 2000 spectrophotometer (Fisher Scientific, Waltham, MA) as the absorbance at 

OD600, and cultures were plated in triplicate at three time points during the exponential 

growth phase on Difco™ typtic soy agar (TSA) (Becton Dickson, Sparks, MD) to obtain 

culturable concentrations and calculate specific growth rates (µ).  For three culture 

conditions (15‰, 1mM PO4, pH 6.0; 10‰, 5µM PO4, pH 6.0, and 30‰, 1mM PO4, pH 
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8.0), pH was monitored during growth to determine the effect of metabolites on pH and 

assess pH at the time of RNA extraction, and it was observed that pH dropped 

approximately 0.5 units during growth.  This finding is important as a medium with an 

initial pH of 8.0 corresponds to a pH of 7.5 at the time of RNA extraction, which may 

affect the relative levels of nptA expression among strains. 

RNA Extraction.  During mid-exponential growth (generally ~108 colony forming units 

(CFU) / ml, OD600 = 0.45), 1.8 ml culture was removed from each replicate culture for 

RNA extraction.  RNA was extracted using the RiboPure™-Bacteria Kit (Ambion, 

Austin, TX) following the manufacturer’s instructions with a single 50 µl elution 

followed by the DNase I treatment as described in the manufacturer’s instructions.  A 

second DNase treatment was performed using TURBO DNA-free (Ambion, Austin, TX) 

according to the manufacturer’s instructions for routine treatment. 

DNA Extraction.  For use as a PCR positive control and for construction of the standard 

curve (described below), V. vulnificus CMCP6 was grown overnight at 37°C in 5 ml BHI 

+ 0.5% NaCl.  DNA was extracted using the QIAamp DNA Blood MIDI kit (Qiagen, 

Valencia, CA) following the manufacturer’s instructions.  For sequence analysis of V. 

vulnificus strains ATCC 27562, 9067-96, 33147, and 302/99, cultures were grown 

overnight at 37°C in 2 ml BHI + 0.5% NaCl.  DNA extraction was carried out using the 

QIAamp DNA Stool Mini kit (Qiagen, Valencia, CA) following the manufacturer’s 

instructions.  The DNA blood MIDI kit yielded higher concentrations of DNA, which 

were necessary for construction of the standard curve.  DNA concentrations were 

determined using the NanoDrop 2000 spectrophotometer (Fisher Scientific, Waltham, 

MA). 
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PCR.  RNA extracts were verified to be free of DNA contamination via endpoint PCR 

targeting a conserved region of nptA.  Primers are described in Table 4.1.  PCR was 

carried out in 25 µl reactions consisting of 12.5 µl 2X GoTaq Green Master Mix 

(Promega, Madison, WI), 8.5 µl nuclease-free water (Fisher Scientific, Waltham, MA), 

1µl (0.4 µM) of each primer (Integrated DNA Technologies, Coralville, IA), and 2 µl of 

RNA template.  Thermocycling conditions included an initial denaturation step at 94°C 

for 5 minutes followed by cycling at 94°C for 30 seconds, 60°C for 30 seconds, and 72°C 

for one minute for 30 cycles with a final extension at 72°C for 7 minutes.  PCR products 

were visualized via gel electrophoresis using a 2% agarose gel stained with ethidium 

bromide.  For each set of PCR reactions a no-template-added negative control was 

included to control for contamination, and genomic DNA from V. vulnificus CMCP6 was 

used as a positive control. 

Primer Design.  The primer sets used for qRT-PCR are shown in Table 4.1.  Primers 

were designed based on the nptA gene sequence of V. vulnificus CMCP6 (VV1_0514, 

accession number NC_004459) using PrimerQuest software (Integrated DNA 

Technologies, Coralville, IA).  Initial qRT-PCR runs failed to amplify the biotype 3 

strain.   A partial nptA sequence was obtained for this strain by direct sequencing using 

the nptA1/nptA2 primer set (accession number JN420346), and primers 

(BT3nptA1/BT3nptA2, Table 4.1) were designed that target regions of similarity between 

the biotype 3 strain and V. vulnificus CMCP6.  The 16S rRNA was used as an 

endogenous control for normalization of nptA concentration as has been previously 

reported (38, 95, 148). 



www.manaraa.com

 

80 
 

Standard Curve.  Standard curves for all qRT-PCR targets were constructed using 

genomic DNA from V. vulnificus CMCP6.  Target copy numbers were estimated by 

multiplying the DNA concentration by Avogadro’s number and dividing by the product 

of the genome size and average weight of a base pair (178).  Genomic DNA was serially-

diluted in AE buffer (Qiagen, Valencia, CA) to final concentrations ranging from 101 to 

106 gene copies/reaction.  Each concentration on the standard curve was run in duplicate 

on each reaction plate.  Default settings for the Applied Biosystem 7500 Real-Time PCR 

System (Carlsbad, CA) were used to establish the baseline fluorescence for each 

quantitative reverse transcriptase PCR (qRT-PCR) run.    Standard curves relating CT 

values to target copy concentration were constructed and linear regression was used to 

evaluate qRT-PCR runs.  All runs had correlation coefficients ( r2 ) > 0.90 with 

amplification efficiency between 80 and 110%. 

qRT-PCR.  RNA concentrations were measured using the NanoDrop 2000 

spectrophotometer (Fisher Scientific, Waltham, MA) and were diluted to 20 ng/µl in 

nuclease-free water (Fisher Scientific, Waltham, MA).  PCR reactions were carried out in 

96-well plates and all reactions were run using the Applied Biosystems 7500 Real-Time 

PCR System (Carlsbad, CA).  The qScript 1-step SYBR green qRT-PCR kit, low ROX 

(Quanta Biosciences, Gaithersburg, MD) was used for all qRT-PCR reactions.  Reactions 

were 25µl total volume consisting of 12.5 µl 2X qScript master mix, 5.5 µl nuclease-free 

water, 0.75 µl (0.3µM) of each primer (Integrated DNA Technologies, Coralville, IA), 

and 5 µl RNA template (100ng).  qRT-PCR reaction plates were centrifuged prior to PCR 

at 1000 × g for 1 minute.  Thermocycling conditions included an initial reverse-

transcriptase step at 50°C for 10 minutes, denaturation at 95°C for five minutes, cycling 
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at 95°C for 10 seconds and 60°C for 30 seconds, and a final melt curve stage using 

instrument default settings.    The 16S rRNA gene target was set as the endogenous 

control for normalization of the nptA transcript data, and data were reported as 

normalized mean quantities as calculated by the instrument.  Each RNA sample was run 

in duplicate and two no-template-added controls were included for each target run as 

negative controls.  Melting temperatures for standard curve amplicons were evaluated to 

assess specificity of amplification, and amplicons which had melting temperatures 

outside the ranges specified (Table 4.1) were not considered for data analysis. 

DNA Sequencing.  PCR amplicon was generated for the nptA gene of V. vulnificus 

302/99(3) using the nptA1/nptA2 primers (Table 4.1).  The region amplified by the 

nptA1/nptA2 primer set does not include the region of the gene expected to encode the 

REK motif related to pH-dependent activity (167).  A previously described primer set 

(nptAF/hypB) (139) includes 991 bp of the nptA gene including the region expected to 

contain the REK motif, so this primer set was used to generate amplicons for V. 

vulnificus 9067-96(C), 27562(E), 33147(2), and 302/99(3) as described above (accession 

numbers JN646864, JN420347, JN420348, and JN646863, respectively).  All PCR 

amplicons were purified using the QIAquick PCR Purification kit (Qiagen, Valencia, 

CA) according to the manufacturer’s instructions.  Duplicate single-extension sequencing 

using both primers was performed on amplicons by Macrogen Corp, USA (Rockville, 

MD). 

Sequence Analysis.  Contigs for forward and reverse sequences were assembled using 

DNA Baser software (HeracleBiosoft, Pitesti, Romania).  Sequences obtained for V. 

vulnificus strains used in this study were aligned with nptA sequences for V. vulnificus 
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strains CMCP6, M06-24/O, YJ016, V. alginolyticus 12G01, V. brasiliensis CAIM 495, V. 

cholerae O395, and V. parahaemolyticus RIMD 2210633, and V. sinaloensis CAIM 648  

obtained from GenBank (NP_759505, YP_004189734, NP_933474, ZP_01261953, 

ZP_08097714, YP_001216171, NP_796905, and ZP_08102804).  Sequences were 

aligned by ClustalW using MEGA 5 software (147).  Neighbor-joining tree generation, 

bootstrapping, and distance matrix calculation were also performed using MEGA 5 

software (147). 

Statistics.  Mean quantities of nptA mRNA normalized to 16S rRNA were log-

transformed to meet the assumption of a normal distribution for all statistical analyses. 

All statistical analyses were considered significant at the alpha level of 0.05. Differences 

in nptA transcript abundance among experimental media and among strains were 

compared via two-tailed, one-way analysis of variance (ANOVA) followed by Tukey’s 

post-hoc test  using InStat version 3.00 (GraphPad Software, Inc, La Jolla, CA).  

Spearman correlations relating salinity, phosphate concentration, pH, growth rate, and 

nptA expression were calculated using IBM SPSS Statistics 19 (SPSS, Chicago, IL).  

Nested ANOVA analyses were also performed to determined interaction effects between 

salinity, phosphate concentration, and pH.  To compare nptA transcript abundance with µ, 

strains were separated into two groups based on similar patterns of nptA expression as 

well as similarity in nptA gene sequence (biotype 1, type C and biotype 3 strains formed 

the clinically-associated group, while biotype 1, type E and biotype 2 strains formed the 

environmentally-associated group). Mean µ in each medium were calculated for both 

groups. Comparisons were not made among individual strains because the power of the 

analysis was very low; however, grouping the strains increased the statistical power.  
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Relative growth rates were calculated as the ratio of µ of the clinically-associated group 

to µ of the environmentally-associated group. Relative concentrations of nptA transcripts 

were also calculated using the same groupings (ratio of clinically and environmentally-

associated groups).  The relative  and concentration of nptA transcripts in each medium 

were subjected to Pearson correlation analysis. 

Results 

nptA Transcript Abundance.  Abundance of nptA transcripts normalized to that of the 16S 

rRNA gene is shown for each V. vulnificus strain in Figures A1 through A5 (Appendix), 

and the interaction plot showing the effects of salinity and pH on transcript abundance is 

shown in Figure 4.1.  The effect of phosphate on transcript abundance is not shown as it 

did not significantly affect transcript abundance among all strains.  16S rRNA 

transcription was consistently measured on the order of 108 copies per reaction for all 

strains regardless of the culture media.  Normalized nptA transcript abundance varied 

under the conditions tested by as much as 3.2 log units, and factors influencing 

differences in expression levels differed by strain (Figure 4.1 and Figures A1-5).  When 

data from all conditions were pooled, the two biotype 1 (type C) strains (CMCP6(C) and 

9067-96(C)) as well as the biotype 3 strain, 302/99(3) showed significantly lower levels 

of nptA transcript abundance (more than 100-fold lower; Figures A1 through A3) than 

did the biotype 1 (type E) strain (27562(E)) or the biotype 2 strain (33147(2)) (Figures 

4.4-5, P < 0.0001).  Post-hoc tests showed no significant differences in nptA transcript 

abundance among the biotype 1 (type C) strains and biotype 3 strain (P = 0.3877).  

Similarly, transcript abundance between the biotype 1 (type E) strain and biotype 2 strain 

were not significantly different (P = 0.3746).  For all strains, nptA transcript abundance 
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was approximately tenfold greater in BHI + 0.5% NaCl compared to sterile seawater, in 

which the lowest concentrations of transcripts (between -4.3 and -5.3 log units) were 

measured. 

 Parameters influencing transcript concentration were similar among biotype 1 

(type C) and biotype 3 strains.  Mean abundance of nptA mRNA for these strains was -4.0 

log units (on the order of 104 target copies/reaction) in most media; however, in 

conditions of low salinity (10‰) and high pH (8.0), transcript concentrations for the 

biotype 1 CMCP6(C) and biotype 3 strains was approximately 1.4 logs greater than in 

other experimental media (Figures A1 and A3).  Mean transcript concentrations were also 

higher for the biotype 1 9067-96(C) strain in low salinity, alkaline media, but the 

difference in transcript concentration was not as great compared to other conditions tested 

in 9067-96C(C) as it was for CMCP6(C) or biotype 3 (Figure A2).  Transcript 

concentration in the biotype 3 strain was significantly negatively correlated with salinity 

(r2 = 0.30, P = 0.003).  Salinity alone accounted for 17.7% and 39.4% of variability in 

transcript abundance for CMCP6(C) and the biotype 3 strain, respectively, and this effect 

was significant (P = 0.027 and < 0.001, respectively).  The interaction of salinity with pH 

was also significant for CMCP6(C) and the biotype 3 strain, accounting for 27.2% and 

19.5% of variation in transcript abundance, respectively (P < 0.0001).  pH and nptA 

transcript concentration were positively correlated for both biotype 1, type C strains (r2 = 

0.18 and 0.40, P = 0.021 and < 0.0001 for CMCP6(C) and 9067-96(C), respectively).   

 Similar concentrations of nptA transcripts were  observed for biotype 1 (type E) 

and biotype 2 strains under all conditions tested, and  differed from those of the other 

strains [biotype 1, (type C) and biotype 3 strains] in media at pH 6.0.  The biotype 1 (type 
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E) and biotype 2 strains showed increased transcript abundance (approximately one log10 

increase) at low pH regardless of salinity or phosphate concentration and maintained high 

concentrations in all low salinity media (Figures A4 and A5).   Normalized nptA 

transcript abundance ranged from -1.5 log units to -4.6 log units (approximately 106 to 

104 target copies/reaction). pH and nptA transcript abundance were negatively correlated 

for the biotype 1 (type E) strain (r2 = 0.14, P = 0.042), but not the biotype 2 strain.  

Similar to the biotype 3 strain, salinity was significantly negatively correlated with nptA 

abundance for the biotype 1 (type E) and biotype 2 strains (r2 = 0.25 and 0.59, P = 0.004 

and < 0.001, respectively) with normalized transcript concentrations between -2.7 and -

1.1 log units at low salinity.  The interaction of salinity with pH also showed a significant 

effect on transcript abundance, accounting for 15.8% and 14.5% of variability in biotype 

1 (type E) and biotype 2 strains (P ≤ 0.001). 

Analysis of Deduced NptA Sequences.  Due to the observed influence of pH on nptA 

transcript abundance, partial NptA amino acid sequences were deduced from nucleotide 

sequences for all V. vulnificus strains to determine whether the REK motif previously 

associated with pH-dependent activity in animals (167) was present. This motif was not 

observed in the sequences obtained.  These sequences were compared with amino acid 

sequences of V. vulnificus strains (CMCP6, YJ016, and MO6-24/O; all biotype 1, type C 

strains) obtained from GenBank (Figure 4.2).  Deduced sequences matched a 302 amino 

acid segment encoded by 3’ terminus of the nptA gene in V. vulnificus CMCP6(C).  

Sequences for CMCP6(C), 9067-96(C), and M06-24/O were identical (100% identity) 

and had 97.8% identity to the partial nptA sequence of YJ016.  Partial sequences of the 

biotype 1 (type C) strains used in this study had 96.3% identity to 302/99(3).  Sequences 
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for strains 27562(E) and 33147(2) had  98.2% identity to each other.  Sequence identity 

for both 27562(E) and 33147(2) strains compared to CMCP6(C), 9067-96(C), and 

302/99(3) was 85.4 to 89.4%.    The gene sequence in V. parahaemolyticus had 63.7 to 

65.2% identity to V. vulnificus strains, and V. cholerae, which had the least similar 

sequence, had 50.5 to 54.5% identity to V. vulnificus. 

Growth Rates.  Mean growth rates (µ) for all strains (pooled data) in each condition are 

shown in Table 4.2.  Mean µ among all strains (pooled) ranged from 0.16 to 1.49 hr-1 

under the various conditions (Table 4.2). Some significant differences in µ under the 

differing conditions were observed (Table 4.2). In general, the slowest mean growth rates 

were observed in media with either low salinity (0.37 hr-1), low pH (0.55 hr-1), or in 

seawater (0.43 hr-1).  When growth rates were compared among strains by pooling data 

from all media, they did not vary significantly (P = 0.7314, Figure 4.3). 

We hypothesized that µ of V. vulnificus strains would be correlated with nptA 

transcript abundance as the gene was expected to facilitate growth via rapid phosphate 

uptake.  Since biotype 1 (type C) and biotype 3 strains showed similar concentrations of 

nptA transcripts and amino acid sequence identity different from biotype 1 (type E) and 

biotype 2 strains, these strains were grouped separately.  Grouping also served to increase 

the power of the analyses and accounted for differences in strain numbers between 

groups.  Group I included CMCP6(C), 9067-96 (C), and 302/99(3) while group II 

included 27562(E) and 33147(2).  The relative µ (ratio of mean µ for group I vs. mean µ 

of group II strains) was calculated for each medium (data from all strains in each group 

were pooled).  A higher relative µ indicates relatively faster growth of group I vs. group 

II strains (Table 4.2); a relative µ of 1.0 would indicate equal growth rates. The two 
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conditions in which the group I strains clearly outpaced the growth of the group II strains 

were low salinity, pH 7.0 (relative µ of 1.77 for high phosphate, and 1.45 for low 

phosphate).  Conversely, the mean µ of the group II strains clearly exceeded that of the 

group I strains in seawater (ratio of 0.55).  Relative µ were significantly positively 

correlated with relative nptA transcript abundance, which was calculated using the same 

strain groupings as relative µ (r2 = 0.30, P = 0.0441). 

Discussion 

This study revealed differences in nptA transcript abundance among V. vulnificus 

strains representing the three known biotypes, and biotype 1, C and E genotypes 

suggesting a potential for differences in expression of this gene.  Biotype 1 (type C) and 

biotype 3 strains (group I) showed transcript concentrations similar to each other but 

distinct from and less than biotype 1 (type E) and biotype 2 strains (group II), which were 

also similar to each other.  In addition to differences in nptA transcript abundance among 

the strains, mRNA concentrations were also differentially influenced based on changes in 

salinity, phosphate concentration, and pH between strain groups.  These results suggest 

that the nptA gene may play a divergent role between strain groups, which may affect a 

given strain’s ability to adapt to shifts in changes to environmental conditions.  The 

previous study of NptA in V. cholerae suggested that this protein may also aid in host 

colonization (92).  Differences in nptA expression between V. vulnificus strain groups 

may reflect differences in host preference or virulence potential, although the relationship 

between nptA expression and either host association or virulence was not assessed in this 

study. 
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The V. cholerae NptA protein exhibited pH-dependent activity when cloned into 

Escherichia coli, showing half the activity at pH 6.5 compared to pH 9.0; however, 

expression of nptA was not measured (92).  In the present study, pH also significantly 

affected transcript abundance (increased concentrations at low pH) as was observed for 

biotype 1 (type E) and biotype 2 strains in all pH 6.0 media (regardless of salinity or 

phosphate concentration), which would help offset a decline in enzyme activity, if it 

occurs in V. vulnificus.  For the group II strains, an independent effect of salinity was also 

observed such that low salinity, regardless of phosphate concentration or pH, also 

increased mRNA concentrations.  In contrast, nptA transcript abundance in biotype 1 

(type C) and biotype 3 was positively correlated with pH when salinity was low, and a 

significant increase in nptA transcripts was observed under these conditions.  Strain-

dependent differences in nptA transcript concentrations may be related to differences in 

stress response or host association among the strains. 

The pH of experimental media dropped approximately 0.5 units during V. 

vulnificus growth such that an experimental medium with an initial pH of 8.0 would be at 

pH 7.5 at the time the RNA for the expression assay was extracted.  Taking this into 

consideration, the low salinity (10‰), high phosphate, pH 8.0  medium in which the 

biotype 1 (type C) and biotype 3 clinically-associated strains showed the greatest nptA 

transcript concentrations would be most similar to human blood chemistry (9‰, pH ~7.4) 

among the conditions tested (91).  Low pH media (representing a pH of ~5.5 at RNA 

extraction), in which the biotype 1 (type E) and biotype 2 strains showed the highest 

transcript abundance, may also approximate acidic conditions found in the digestive 

tissues of oysters (pH 5.5) or fish known to be colonized by vibrios (ranging from pH 1.0 
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to 5.0, after feeding) (45, 51, 58, 115, 134).  These observations suggest that transcript of 

nptA may be up-regulated to facilitate growth in specific host environments.  The 

chemistry of the experimental media tested in this study vs. that of host environments is 

not directly comparable due to the presence of other ions, serum, etc. in the host, so 

interpretation of these data regarding a specific role for NptA in host-colonization should 

be considered cautiously.  Interestingly, increased nptA abundance in biotype 1 (type C) 

strains v. biotype 1 (type E) or biotype 2 strains was not observed in seawater (pH 8.0), 

which may be due to a greater amount of variability associated with the cumulative 

interactions of pH and salinity for biotype 1 (type C) strains than biotype 1 (type E) or 

biotype 2 strains.   Furthermore, greater concentrations of nptA transcripts in the biotype 

1 (type E) strain compared to the biotype (type C) strain may be related to generally 

higher proportions of type E in environmental waters (60, 99). 

Analysis of the deduced amino acid sequences showed that the REK motif related 

to pH-dependent activity of animal NaPi-type II transporters was not present in these V. 

vulnificus strains, which was also the case for V. cholerae (92).  Alignment of NptA 

sequences revealed that the amino acid sequences of the biotype 1 (type E) strain were 

nearly identical to the biotype 2 strain (98.2% identity) but differed from biotype 1 (type 

C) sequences (86.2% identity).  Furthermore, the NptA sequence of the biotype 3 strain, 

which showed nptA transcript levels similar to biotype 1 (type C) strains, showed greater 

identity (96.3%) to the biotype 1 (type C) strains than the biotype 1 (type E) or biotype 2 

strains (89.4% and 88.6% identity, respectively).  These data support the existence of at 

least two separate alleles between the strain groups, and the heterogeneity of the NptA 
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gene sequence between these groups may account for differences in expression pattern or 

even gene function, although this was not investigated. 

In this study, we observed that V. vulnificus strains more commonly isolated from 

water, oysters, and fish (group II strains) exhibit nearly 100-fold greater transcript 

abundance of the nptA gene compared to group I strains, which are more commonly 

associated with human infections, and that heterogeneity in the amino acid sequence is 

related to strain type.  Such heterogeneity between biotype 1 vcg genotypes has been 

previously demonstrated in eight virulence-associated and housekeeping genes, and the 

authors suggested that heterogeneity between type C and type E strains may a divergence 

of the species into two ecotypes (127).  Interestingly, nptA transcript abundance appears 

to be related to relative µ, where higher µ and more nptA transcripts characterize the 

group II strains compared to the group I strains. Salinity, pH, and phosphate 

concentration all affected the level of nptA abundance at certain levels and as a result of 

interactions between parameters, suggesting that multiple environmental variables 

contribute to regulation of expression, and that these effects differ by strain. Further 

studies are necessary to understand the relationship of nptA regulation and function to V. 

vulnificus growth in free-living and host-associated states, and may shed some light on 

the mechanism of host preference and virulence potential of this opportunistic pathogen. 
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Table 4.1 – Primer sets used in this study. 
Target Primer Sequence (5’-3’) Amplicon Size (bp)a Melt Tempb Reference 

nptA  

(all strains) 

nptA1 TGGTCTTGTGGCGACAGCTCTTAT 
691 ND This study 

nptA2 TACCAATGTTCGCACCCAGAGTGA 

nptA  

(biotypes 1 and 2) 

qNptA1 CCTTCCTTTGGAAATGATGTTCGGC 
121 81.10 ± 0.16 This study 

qNptA2 TACAGCGTACGTGGCCAAGAGAAA 

nptA  

(biotype 3) 

BT3nptA1 CACCCGTGTTCAATAGTGGTGACA 
76 77.53 ± 0.21 This study 

BT3nptA2 CCTTCCTTTGGAAATGATGTTCGGC 

16S rRNA 
RRSH0701F ACGACACCACCTTCCTCACAAC 

136 84.31 ± 0.23 (95) 
RRSH0701R ACACGGTCCAGACTCCTACGG 

nptA/hypB 
nptAF GAGTTTGCCTCACACCCTGT 

1236 ND This study 
hypBR TGCCGCTCTTCCTTGTAGTT 

aAmplicon size determined based on the genome sequence of V. vulnificus CMCP6 
bAverage melting temperature and standard deviation for qRT-PCR targets.  Average melting temperatures were determined from 
standard curve amplicons measured during the study (n = 169, 79, 199 for nptA – biotypes 1 and 2, nptA – biotype 3, and 16S rRNA, 
respectively).  Reactions that produced melting temperatures > 0.5°C from the mean melting temperature at the time of analysis were 
not considered in this calculation.  Melting temperatures were not determined (ND) for end-point PCR targets.
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Table 4.2 – Mean µ in each medium (data for all strains pooled).  Relative µ and 
relative nptA refer to the ratios of the average µ and nptA expression levels, 
respectively, of pooled clinically-associated strains [CMCP6(C), 9067-96(C), 
302/99(3)] to environmentally-associated strains [27562(E) and 33147(2)]. 

Media Mean1 Relative µ Relative nptA  

BHI + 0.5% NaCl 0.97 ± 0.23A 0.93 1.27 

Seawater 0.43 ± 0.15B 0.55 1.13 

30ppt, 1mM PO4, pH 6 0.68 ± 0.20A,C 0.64 1.74 

30ppt, 1mM PO4, pH 7 0.93 ± 0.18A 0.86 1.38 

30ppt, 1mM PO4, pH 8 0.79 ± 0.15A 1.05 1.58 

30ppt, 5µM PO4, pH 6 0.68 ± 0.10A,C 0.88 1.98 

30ppt, 5µM PO4, pH 7 0.91 ± 0.33A 0.75 1.50 

30ppt, 5µM PO4, pH 8 0.78 ± 0.25A,C 0.91 1.36 

15ppt, 1mM PO4, pH 6 0.46 ± 0.09C 0.72 2.22 

10ppt, 1mM PO4, pH 7 0.40 ± 0.11B 1.77 2.07 

10ppt, 1mM PO4, pH 8 0.30 ± 0.15B 0.64 1.56 

10ppt, 5µM PO4, pH 6 0.41 ± 0.11B 0.87 2.06 

10ppt, 5µM PO4, pH 7 0.34 ± 0.17B 1.45 2.72 

10ppt, 5µM PO4, pH 8 0.29 ± 0.06B 0.79 1.18 

1Mean µ of all strains, pooled, in each medium. 
A,B,C Statistical comparison of mean µ (all strains pooled) in each medium.  Growth rates 
in media sharing the same superscript are not significantly different (P < 0.05).
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Figure 4.1 – Interaction plots of transcript abundance data at varying salinity and pH.  
Strains were grouped according to similar transcript abundance values under each 
condition where Group I includes biotype 1 (type C) and biotype 3 strains and Group II 
includes biotype 1 (type E) and biotype 2 strains.  Log mean quantities are the log10 
values of nptA transcript abundance normalized to that of 16S rRNA. 
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Figure 4.2 – Neighbor-joining tree of deduced NptA amino acid sequences.  
Sequences were obtained for stains 9067-96(C), 302/99(3), 27562(E), and 
33147(2) and aligned with a 302 amino acid segment encoded by the 3’-terminus 
of the nptA gene of V. vulnificus CMCP6(C)..  Numbers represent bootstrap 
values at 500 iterations.  

 V vulnificus 9067-96 (C)

 V vulnificus MO6-24/O (C)

 V vulnificus CMCP6 (C)

 V vulnificus YJ016 (C)

 V vulnificus 302/99 (3)

 V vulnificus 27562 (E)

 V vulnificus 33147 (2)

 V parahaemolyticus

 V alginolyticus

 V brasiliensis

 V sinaloensis

 V cholerae

79

87

57

100

100

99

98

99

0.05



www.manaraa.com

 

95 
 

 

Figure 4.3 – Mean growth rates for V. vulnificus strains grown under differing conditions.  Error bars represent standard 
deviations.  Darker patterns represent biotype 1 (type C) strains CMCP6(C) and 9067-96(C) and the biotype 3 strain 302/99(3) 
while lighter patterns represent the biotype 1 (type E) strain 27562(E) and the biotype 2 strain 33147(2).
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Figure A1 – nptA transcript abundance normalized to that of the 16S rRNA gene in V. vulnificus CMCP6 (biotype 1, type C) under 
differing conditions.  Asterisks (*) indicate conditions under which the highest levels of nptA transcript were measured (P < 0.05).  No 
significant difference in abundance was measured between conditions marked with an asterisk.  
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Figure A2 – nptA transcript abundance normalized to that of the 16S rRNA gene in V. vulnificus 9067-96 (biotype 1, type C) 
under differing conditions.  Asterisks (*) indicate conditions under which the highest levels of nptA transcript was measured, 
although abundance is not significantly higher (P > 0.05) than all other media.    
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Figure A3 – nptA transcript abundance normalized to that of the 16S rRNA gene in V. vulnificus 302/99 (biotype 3) under 
differing conditions.  Asterisks (*) indicate conditions under which the highest levels of nptA transcript were measured (P < 
0.05).  No significant difference in abundance was measured between conditions marked with an asterisk.  The primer set for 
the biotype 3 assay was not developed until after BHI and seawater data were collected, and, due to financial limitations, these 
experiments could not be repeated.   
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Figure A4 – nptA transcript abundance normalized to that of the 16S rRNA gene in V. vulnificus 27562 (biotype 1, type E) 
under differing conditions.  Asterisks (*) indicate conditions under which the highest levels of nptA transcript were measured 
(P < 0.05).  No significant difference in abundance was measured between conditions marked with an asterisk.   
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Figure A5 - nptA transcript abundance normalized to that of the 16S rRNA gene in V. vulnificus 33147 (biotype 2) under differing 
conditions.  Asterisks (*) indicate conditions under which the highest levels of nptA transcript were measured (P < 0.05).  No 
significant difference in abundance was measured between conditions marked with an asterisk. 
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